Log in

Influence of Liquid Composition and Discharge Energy on Process Productivity, Composition and Properties of Particles Produced by Electric Discharge Erosion of WC–5TiC–10Co Alloy

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Increasing the hardness and wear resistance of powder alloys and coatings through the use of ultrafine-grained powders and metastable phases is a promising way in powder metallurgy. This paper presents results of the studies of the process of obtaining ultrafine powders by the electrical discharge erosion of the cemented carbide waste WC–5TiC–10Co on a special installation. An empirical model that describes the dependence of the productivity of the process on the discharge energy and properties of a liquid is provided. The dependence of the chemical and phase compositions of the obtained powders on the compositions of the used liquids and the specific energy consumption was investigated. The effect of the discharge energy on the morphological composition and the average particle diameter was examined. It was revealed that the formation of a metastable solid solution (W,Ti)C and a decrease in the concentration of cobalt induce an increase in the hardness of the resulting spherical particles from 1410HV0.05 to 2540HV0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Buravlev, I.Y., Shichalin, O.O., Papynov, E.K., Golub, A.V., et al., WC–5TiC–10Co hard metal alloy fabrication via mechanochemical and SPS techniques, Int. J. Refract. Met. Hard Mater., 2021, vol. 94, p. 105385. https://doi.org/10.1016/j.ijrmhm.2020.105385

    Article  Google Scholar 

  2. Chen, J., Gong, M.F. and Wu, S.H., Flank wear mechanism of WC-5TiC-10Co cemented carbides inserts when machining HT250 gray cast iron, Appl. Mech., Mater., 2014, vols. 670–671, p. 517. https://doi.org/10.4028/www.scientific.net/AMM.670-671.517

  3. Lantcev, E., Nokhrin, A., Malekhonova, N., Boldin, M., et al., A study of the impact of graphite on the kinetics of sps in nano-and submicron WC–10% Co powder compositions, Ceramics, 2021, vol. 4, no. 2, p. 331.

    Article  Google Scholar 

  4. Lantsev, E.A., Malekhonova, N.V., Nokhrin, A.V., Chuvil’deev, V.N., et al., Spark plasma sintering of fine-grained WC hard alloys with ultra-low cobalt content, J. Alloys Compd., 2021, vol. 857, p. 157535. https://doi.org/10.1016/j.jallcom.2020.157535

    Article  Google Scholar 

  5. Shichalin, O.O., Buravlev, I.Y., Portnyagin, A.S., Dvornik, M.I., et al., SPS hard metal alloy WC–8Ni–8Fe fabrication based on mechanochemical synthetic tungsten carbide powder, J. Alloys Compd., 2020, vol. 816, p. 152547. https://doi.org/10.1016/j.jallcom.2019.152547

    Article  Google Scholar 

  6. Luo, R., Chen, N., **ong, H.W., and Li, Z.Y., Microhomogeneous WC–TiC–Co composite powders with enhanced sinterability via a two-step carburization method, Int. J. Refract. Met. Hard Mater., 2021, vol. 95, p. 105413. https://doi.org/10.1016/j.ijrmhm.2020.105413

    Article  Google Scholar 

  7. Duman, D., Gokce, H., and Cimenoglu, H., Synthesis, microstructure, and mechanical properties of WC–TiC–Co ceramic composites, J. Eur. Ceram. Soc., 2012, vol. 32, no. 7, p. 1427. https://doi.org/10.1016/j.jeurceramsoc.2011.06.013

    Article  Google Scholar 

  8. Lee, K.H., Cha, S.I., Kim, B.K. and Hong, S.H., Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC–TiC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, nos. 1–2, p. 109. https://doi.org/10.1016/j.ijrmhm.2005.04.018

    Article  Google Scholar 

  9. Shichalin, O., Buravlev, I.Y., Papynov, E., Golub, A., et al., Comparative study of WC-based hard alloys fabrication via spark plasma sintering using Co, Fe, Ni, Cr, and Ti binders, Int. J. Refract. Met. Hard Mater., 2022, vol. 102, p. 105725.

    Article  Google Scholar 

  10. Guo, Z.X., **ong, J, Yang, M., Dong, G.B., et al., Tool wear mechanism of WC–5TiC–10Co ultrafine cemented carbide during AISI 1045 carbon steel cutting process, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, p. 262. https://doi.org/10.1016/j.ijrmhm.2012.06.004

    Article  Google Scholar 

  11. Wang, K.F., Chou, K.C. and Zhang, G.H., Preparation of high-purity and ultrafine WC–Co composite powder by a simple two-step process, Adv. Powder Technol., 2020, vol. 31, no. 5, p. 1940. https://doi.org/10.1016/j.apt.2020.02.027

    Article  Google Scholar 

  12. Zaitsev, A.A., Vershinnikov, V., Konyashin, I., Levashov, E.A., et al., Cemented carbides from WC powders obtained by the SHS method, Mater. Lett., 2015, vol. 158, p. 329. https://doi.org/10.1016/j.matlet.2015.06.058

    Article  Google Scholar 

  13. Al-Aqeeli, N., Characterization of nano-cemented carbides Co-doped with vanadium and chromium carbides, Powder Technol., 2015, vol. 273, p. 47.

    Article  Google Scholar 

  14. Bonache, V., Salvador, M.D., Busquets, D., and Segovia, E.F., Fabrication of ultrafine and nanocrystalline WC–Co mixtures by planetary milling and subsequent consolidations, Powder Metall., 2011, vol. 54, no. 3, p. 214. https://doi.org/10.1179/174329009x449323

    Article  Google Scholar 

  15. Zhou, P.F., **ao, D.H., and Yuan, T.C., Comparison between ultrafine-grained WC–Co and WC–HEA–cemented carbides, Powder Metall., 2017, vol. 60, no. 1, p. 1. https://doi.org/10.1080/00325899.2016.1260903

    Article  Google Scholar 

  16. Wang, X.Z., Wang, H.B., Liu, X.M., Yuan, T., et al., Effect of combined addition of grain growth inhibitors on the properties of WC–12Co ultrafine grained carbide coating, Rare Metal Mater. Eng., 2018, vol. 47, no. 4, p. 1216.

    Google Scholar 

  17. Wu, Y.C., Yang,Y., Tan, X.Y., Luo, L.M., et al., Preparation technology of ultra-fine tungsten carbide powders: An overview, Front. Mater., 2020, vol. 7, p. 94. https://doi.org/10.3389/fmats.2020.00094

    Article  Google Scholar 

  18. Buravleva, A.A., Fedorets, A.N., Vornovskikh, A.A., Ognev, A.V., et al., Spark plasma sintering of WC-based 10 wt % Co hard alloy: A study of sintering kinetics and solid-phase processes, Materials, 2022, vol. 15, no. 3, p. 1091. https://doi.org/10.3390/ma15031091

  19. Kolel-Veetil, M.K., Goswami, R., Fears, K.P., Qadri, S.B., et al., Formation and stability of metastable tungsten carbide nanoparticles, J. Mater. Eng. Perform., 2015, vol. 24, no. 5, p. 2060.

    Article  Google Scholar 

  20. Konyashin, I., Lachmann, F., Ries, B., Mazilkin, A.A., et al., Strengthening zones in the Co matrix of WC–Co cemented carbides, Scr. Mater., 2014, vol. 83, p. 17.

    Article  Google Scholar 

  21. Katiyar, P.K. and Randhawa, N.S., A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques, Int. J. Refract. Met. Hard Mater., 2020, vol. 90, p. 105251. https://doi.org/10.1016/j.ijrmhm.2020.105251

    Article  Google Scholar 

  22. Srivastava, R.R., Lee, J.-C., Bae, M., and Kumar, V. Reclamation of tungsten from carbide scraps and spent materials, J. Mater. Sci., 2019, vol. 54, no. 1, p. 83. https://doi.org/10.1007/s10853-018-2876-1

    Article  Google Scholar 

  23. Sun, F., Zhao, Z., and Chen, X., Recovery of WC and Co from cemented carbide scraps by remelting and electrodissolution, Int. J. Refract. Met. Hard Mater., 2019, vol. 80, p. 23.

    Article  Google Scholar 

  24. Kabirinia, F., Shabgard, M., and Tabrizi, N.S., Study on effect of dielectric gas type on electrical discharge erosion synthesis of tungsten carbide nanopowder, Appl. Phys. A., 2019, vol. 125, no. 9, p. 610.

    Article  Google Scholar 

  25. Mondal, S., Singh, P.K., Bishwakarma, H., Shubham, et al., A facile green synthesis of tungsten nanoparticles through Micro-EDM, Mater. Today, 2019, vol. 11, part 2, p. 761. https://doi.org/10.1016/j.matpr.2019.03.039

    Article  Google Scholar 

  26. Singh, P.K., Mondal, S., Das, A.K., Mishra, S.K., et al., Production of W-based nanoparticles via spark erosion process along with their characterization and optimization for practical application in gas sensor, Appl. Phys. A, 2020, vol. 126, no. 1, p. 77. https://doi.org/10.1007/s00339-019-3259-4

    Article  Google Scholar 

  27. Yadav, H.N.S., Bishwakarma, H., Kumar, N., Kumar, S., et al., Production of tungsten carbide nanoparticles through Micro-EDM and its characterization, Mater. Today, 2019, vol. 18, p. 1192. .https://doi.org/10.1016/j.matpr.2019.06.580

    Article  Google Scholar 

  28. Dvornik, M.I., Mikhailenko, E.A., and Nikolenko, S.V., Development of a method for producing submicron cemented carbide from a powder obtained by electrical discharge erosion of scrap in oil, Powder Technol., 2021, vol. 383, p. 175. https://doi.org/10.1016/j.powtec.2021.01.048

    Article  Google Scholar 

  29. Dvornik, M., Mikhailenko, E., Nikolenko, S., Vlasova, N., et al., Production of ultrafine-grained spherical beta-WC–W2C–Co microparticles by electro discharge erosion of WC–15Co alloy in glycerol and their solutions, Mater. Res. Express., 2020, vol. 7, no. 9, p. 096504. https://doi.org/10.1088/2053-1591/abb0d6

    Article  Google Scholar 

  30. Dvornik, M.I. and Mikhailenko, E.A., Production of WC–15Co ultrafine-grained hard alloy from powder obtained by the electroerosive dispersion of VK15 alloy wastes in water, Russ. J. Non-Ferr. Met., 2021, vol. 62, no. 1, p. 97. https://doi.org/10.3103/s1067821221010065

    Article  Google Scholar 

  31. Walter, J.L., Preparation of powder by spark erosion, Powder Metall., 1988, vol. 31, no. 4, p. 267. https://doi.org/10.1179/pom.1988.31.4.267

    Article  Google Scholar 

  32. Bokov, V.M. and Sisa, O.F., Application of an electric arc to produce metal powders, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 3, p. 390. https://doi.org/10.3103/s1068375520030023

    Article  Google Scholar 

  33. Li, S., Yin, X., Jia, Z., Li, Z., et al., Modeling of plasma temperature distribution during micro-EDM for silicon single crystal, Int. J. Adv. Manuf. Technol., 2020, vol. 107, nos. 3–4, p. 1731. https://doi.org/10.1007/s00170-020-05135-x

    Article  Google Scholar 

  34. Ben Salah, N., Ghanem, F., and Ben Atig, K., Numerical study of thermal aspects of electric discharge machining process, Int. J. Mach. Tools Manuf., 2006, vol. 46, nos. 7–8, p. 908. https://doi.org/10.1016/j.ijmachtools.2005.04.022

    Article  MATH  Google Scholar 

  35. Descoeudres, A., Hollenstein, C., Walder, G., and Perez, R., Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma, J. Phys. D: Appl. Phys., 2005, vol. 38, no. 22, p. 4066. https://doi.org/10.1088/0022-3727/38/22/009

    Article  Google Scholar 

  36. Zhang, Y.Z., Liu, Y.H., Shen, Y., Ji, R.J., et al., Investigation on the influence of the dielectrics on the material removal characteristics of EDM, J. Mater. Process. Technol., 2014, vol. 214, no. 5, p. 1052. https://doi.org/10.1016/j.jmatprotec.2013.12.012

    Article  Google Scholar 

  37. Kabirinia, F., Shabgard, M., and Tabrizi, N.S., Prediction of initial particle size of the tungsten carbide synthesized by electrical discharge erosion method based on general dynamic equation of aerosols, Powder Technol., 2019, vol. 346, p. 283.

    Article  Google Scholar 

  38. Boguslavskii, L.Z., Nazarova, N.S., Vinnichenko, D.V., Rud, A.D., et al., Electrodischarge method for synthesizing nanocarbon from gaseous raw hydrocarbons, Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 4, p. 344. https://doi.org/10.3103/s1068375511040041

    Article  Google Scholar 

  39. Yang, Y., Zhang, C., Wang, D., Nie, L., et al., Additive manufacturing of WC–Co hardmetals: A review, Int. J. Adv. Manuf. Technol., 2020, vol. 108, nos. 5–6, p. 1653. https://doi.org/10.1007/s00170-020-05389-5

    Article  Google Scholar 

  40. Carreno-Morelli, E., Alveen, P., Moseley, S., Rodriguez-Arbaizar, M., et al., Three-dimensional printing of hard materials, Int. J. Refract. Met. Hard. Mater., 2020, vol. 87, p. 105110. https://doi.org/10.1016/j.ijrmhm.2019.105110

    Article  Google Scholar 

  41. Liu, J.Y., Chen, J., Liu, B.Y., Lu, Y., et al., Microstructure evolution of WC-20Co cemented carbide during direct selective laser melting, Powder Metall., 2020, vol. 63, no. 5, p. 359. https://doi.org/10.1080/00325899.2020.1815996

    Article  Google Scholar 

  42. Fan, L., Dong, Y., Chen, H., Dong, L., et al., Wear properties of plasma transferred arc Fe-based coatings reinforced by spherical WC particles, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2019, vol. 34, no. 2, p. 433. https://doi.org/10.1007/s11595-019-2070-6

    Article  Google Scholar 

  43. Dvornik, M., Mikhailenko, E., Nikolenko, S., Vlasova, N., et al., Production of ultrafine-grained spherical β‑WC–W2C–Co microparticles by electro discharge erosion of WC–15Co alloy in glycerol and their solutions, Mater. Res. Express, 2020, vol. 7, no. 9, p. 096504. https://doi.org/10.1088/2053-1591/abb0d6

    Article  Google Scholar 

  44. Shang, Y., Yang, G., Kuang, M., Shi, A., et al., Synthesis of homogeneous WC–Co nanoparticles using carbon-coated WO2.72 precursors, Mater. Res. Express, 2019, vol. 6, no. 7, p. 075035. https://doi.org/10.1088/2053-1591/ab1553

    Article  Google Scholar 

  45. Hu, J., Li, K., Mao, X., Xu, P., et al., Preparation of spherical WC–W2C composite powder via noble metal-free catalytic electroless nickel plating for selective laser melting, Mater. Res. Express, 2019, vol. 6, no. 12, p. 125627. https://doi.org/10.1088/2053-1591/ab6533

    Article  Google Scholar 

  46. Sahu, R.K., Hiremath, S.S., Manivannan, P.V., and Singaperumal, M., Generation and characterization of copper nanoparticles using micro-electrical discharge machining, Mater. Manuf. Process., 2014, vol. 29, no. 4, p. 477. https://doi.org/10.1080/10426914.2013.872263

    Article  Google Scholar 

  47. Razeghiyadaki, A., Molardi, C., Talamona, D., and Perveen, A., Modeling of material removal rate and surface roughness generated during electro-discharge machining, Machines, 2019, vol. 7, no. 2, p. 47. https://doi.org/10.3390/machines7020047

    Article  Google Scholar 

  48. Yue, X.M. and Yang, X.D., The role of discharge plasma on molten pool dynamics in EDM, J. Mater. Process. Technol., 2021, vol. 293, p. 117092. https://doi.org/10.1016/j.jmatprotec.2021.117092

    Article  Google Scholar 

  49. Kornev, I., Saprykin, F., Lobanova, G., Ushakov, V., et al., Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency, J. Electrostat., 2018, vol. 96, p. 111.

    Article  Google Scholar 

  50. Kunieda, M., Lauwers, B., Rajurkar, K.P., and Schumacher, B., Advancing EDM through fundamental insight into the process, CIRP Annals, 2005, vol. 54, no. 2, p. 64.

    Article  Google Scholar 

  51. Yeo, S.H., Kurnia, W., and Tan, P.C., Electro-thermal modelling of anode and cathode in micro-EDM, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 8, p. 2513. https://doi.org/10.1088/0022-3727/40/8/015

    Article  Google Scholar 

  52. Pyachin, S.A., Burkov, A.A., Kaminskii, O.I., and Zaikova, E.R., Melting of a titanium alloy under the action of electrical discharges of different duration, Russ. Phys. J., 2019, vol. 61, no. 12, p. 2236. https://doi.org/10.1007/s11182-019-01661-8

    Article  Google Scholar 

  53. Gostimirovic, M., Kovac, P., Sekulic, M., and Skoric, B., Influence of discharge energy on machining characteristics in EDM, J. Mech. Sci. Technol., 2012, vol. 26, no. 1, p. 173. https://doi.org/10.1007/s12206-011-0922-x

    Article  Google Scholar 

  54. Rozenek, M., Sinking electrical discharge machining with glycol and glycerol application as dielectric fluid, in XIII International Conference Electromachining 2018, AIP Conference Proceedings 2017, 2018, p. 020027. https://doi.org/10.1063/1.5056290

  55. Haldar, B., Bandyopadhyay, D., Sharma, R., and Chakraborti, N., The Ti–WC (titanium–tungsten–carbon) system, J. Phase Equilib., 1999, vol. 20, no. 3, p. 337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The material preparation, data collection and analysis were performed by all authors. The first draft of the manuscript was written by Maksim Dvornik, and all authors commented on previous versions of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to M. Dvornik.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornik, M., Burkov, A., Mikhailenko, E. et al. Influence of Liquid Composition and Discharge Energy on Process Productivity, Composition and Properties of Particles Produced by Electric Discharge Erosion of WC–5TiC–10Co Alloy. Surf. Engin. Appl.Electrochem. 59, 127–139 (2023). https://doi.org/10.3103/S1068375523020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523020060

Keywords:

Navigation