Log in

Graphite vs. Sodium Titanate: Diffusion Properties of Negative Electrodes Materials

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work deals with the research of intercalating properties of negative electrode materials for lithium-ion and sodium-ion batteries. The main focus of this work is on the kinetic aspects associated with the diffusion processes of lithium in the graphitic negative electrode material and sodium in titanate materials in relation to the electrochemical parameters. By comparing the materials in terms of kinetic properties expressed by the diffusion coefficient via electrochemical impedance spectroscopy in the state of the base material and after creating the passive film on the electrode, it is possible to determine the application range of the materials and their dependence on the electrochemical parameters. Within the experimental part, the structural and electrochemical parameters and diffusion coefficients of the studied materials are determined by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hong, W.-L. and Lin, L.-Y., Influence of structure directing agents on synthesizing battery-type materials for flexible battery supercapacitor hybrids, J. Taiwan Inst. Chem. Eng., 2019, vol. 100, p. 105.

    Article  Google Scholar 

  2. Aaldering, L.J. and Song, C.H., Tracing the technological development trajectory in post-lithium-ion battery technologies: A patent-based approach, J. Clean. Prod., 2019, vol. 241, p. 18.

    Article  Google Scholar 

  3. Libich, J., Minda, J., Sedlarikova, M., Vondrak, J., et al., Sodium-ion batteries: Electrochemical properties of sodium titanate as negative electrode, J. Energy Storage, 2020, vol. 27, p. 10.

    Article  Google Scholar 

  4. Paleo, A.J., Staiti, P., Rocha, A.M., Squadrito, G., et al., Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes, J. Power Sources, 2019, vol. 434, p. 10.

    Article  Google Scholar 

  5. Dos Santos, G.A. Jr., Fortunato, V.D.S., Silva, G.G., Ortega, P.F.R., et al., High-performance Li-ion hybrid supercapacitor based on LiMn2O4 in ionic liquid electrolyte, Electrochim. Acta, 2019, vol. 325, p. 10.

    Google Scholar 

  6. Afif, A., Rahman, S.M.H., Tasfiah Azad, A., Zaini, J., et al., Advanced materials and technologies for hybrid supercapacitors for energy storage—A review, J. Energy Storage, 2019, vol. 25, art. ID 100852.

  7. Muzaffar, A., Ahamed, M.B., Deshmukh, K., and Thirumalai, J., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renewable Sustainable Energy Rev., 2019, vol. 101, p. 123.

    Article  Google Scholar 

  8. Wang, D.-G., Liang, Z., Gao, S., Qu, C., et al., Metal-organic framework-based materials for hybrid supercapacitor application, Coord. Chem. Rev., 2020, vol. 404, art. ID 213093.

    Article  Google Scholar 

  9. Barsoukov, E., Kim D.-H., Lee, H.-S., Lee, H., et al., Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy, Solid State Ionics, 2003, vol. 161, p. 19.

    Article  Google Scholar 

  10. Zhao, G., Tang, Y., Wan, G., Xu, X., et al., High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays, J. Colloid Interface Sci., 2020, vol. 572, p. 151.

    Article  Google Scholar 

  11. Yu, P., Zeng, Y., Zeng, Y., Dong, H., et al., Achieving high-energy-density and ultra-stable zinc-ion hybrid super-capacitors by engineering hierarchical porous carbon architecture, Electrochim. Acta, 2019, vol. 327, art. ID 134999.

    Article  Google Scholar 

  12. Fouda, M.E., Allagui, A., Elwakil, A.S., Eltawil, A., et al., Supercapacitor discharge under constant resistance, constant current and constant power loads, J. Power Sources, 2019, vol. 435, art. ID 226829.

    Article  Google Scholar 

  13. Zhou, X., Huang, J., Pan, Z., and Ouyang, M., Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion, J. Power Sources, 2019, vol. 426, p. 216.

    Article  Google Scholar 

  14. Fang, J., Miao, X., Zhang, X., Liu, Y., et al., Enhancing the capacity of activated carbon electrodes by a redox mediator pair for the fabrication of flexible asymmetric solid-state supercapacitors, J. Power Sources, 2019, vol. 418, p. 24.

    Article  Google Scholar 

  15. Libich J., Maca J., Vondrak J., Cech O., et al., Supercapacitors: Properties and applications, J. Energy Storage, 2018, vol. 17, p. 224.

    Article  Google Scholar 

  16. Gurten Inal, I.I. and Aktas, Z., Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment, Appl. Surf. Sci., 2020, vol. 514, art. ID 145895.

    Article  Google Scholar 

  17. Reitz, W., A review of: “Impedance spectroscopy, theory, experiment, and applications,” Mater. Manuf. Process., 2006, vol. 21, p. 425.

    Article  Google Scholar 

  18. Zhou, X., Huang, J., Pan, Z., and Ouyang, M., Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion, J. Power Sources, 2019, vol. 426, p. 216.

    Article  Google Scholar 

  19. Rashid, M., Sahoo, A., Gupta, A., and Sharma, Y., Numerical modeling of transport limitations in lithium titanate anodes, Electrochim. Acta, 2018, vol. 283, p. 313.

    Article  Google Scholar 

  20. Montella, C., Apparent diffusion coefficient of intercalated species measured with PITT, Electrochim. Acta, 2006, vol. 51, p. 3102.

    Article  Google Scholar 

  21. Wheeler, S., Hurlbutt, K., and Pasta, M., A new solid-state sodium-metal battery, Chem, 2018, vol. 4, p. 666.

    Article  Google Scholar 

  22. Fu, R., Zhou, X., Fan, H., Blaisdell, D., et al., Comparison of lithium-ion anode materials using an experimentally verified physics-based electro-chemical model, Energies, 2017, vol. 10, p. 20.

    Google Scholar 

  23. Rui, X.H., Yesibolati, N., Li, S.R., Yuan, C.C., et al., Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material, Solid State Ionics, 2011, vol. 187, p. 58.

    Article  Google Scholar 

  24. Zhen, Y., Sa, R., Zhou, K., Ding, L., et al., Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes, Nano Energy, 2020, vol. 74, art. ID 104895.

    Article  Google Scholar 

  25. Liu N., Shi K., Ma K., Wang Y., et al., Promoting the performances of NaTi2(PO4)3 electrode for sodium ion battery by reasonable crystal design and surface modification, Ceram. Int., 2020, vol. 46, p. 19452.

    Article  Google Scholar 

  26. Kulova, T.L. and Skundin, A.M., A critical review of electrode materials and electrolytes for low-temperature lithium-ion batteries, Int. J. Electrochem. Sci., 2020, vol. 15, p. 8638.

    Article  Google Scholar 

  27. Kulova, T.L. and Skundin, A.M., Cyclic voltammetry of supercapacitors with the simplest equivalent circuit, Russ. Chem. Bull., 2020, vol. 69, p. 1672.

    Article  Google Scholar 

Download references

Funding

This work was supported by a graduate research project of the Brno University of Technology: Materialy a technologie pro elektrotechniku IV, reg. no. FEKT-S-20-6206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Libich.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libich, J., Minda, J., Sedlaříková, M. et al. Graphite vs. Sodium Titanate: Diffusion Properties of Negative Electrodes Materials. Surf. Engin. Appl.Electrochem. 57, 542–550 (2021). https://doi.org/10.3103/S1068375521050070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521050070

Keywords:

Navigation