Log in

New Hybrid Polymer Nanocomposites Based on Polyvinylidene Fluoride and CdS/ZnS Nanoparticles: Structure and Dielecric Properties

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The structure and dielectric properties of new hybrid polymer nanocomposites based on polyvinylidene fluoride (PVDF) and CdS and ZnS nanoparticles (NPs) have been studied. It was established that ZnS and CdS NPs, when added at low concentrations, define the structure of the host polymer matrix, and new polar groups and stable charge traps arise, which, in turn, leads to an increase in the dielectric permittivity and polarizing ability of the nanocomposites based on PVDF + CdS/ZnS NPs. As the NP concentration is increased, the NPs start to behave like a separate dispersion phase, and the conductivity of nanocomposites grows as the content of this phase increases, which results in the nanocomposite’s polarizing ability gradually diminishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.

  2. Lai, L.-H., Protesescu, L., Kovalenko, M., and Loi, M., Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 736–742.

    Article  Google Scholar 

  3. Yitan, L., Lin, W., **ya, C., Ruizi, Z., et al., Nanoscale Res. Lett., 2013, vol. 8, no. 1, pp. 1–7.

    Article  Google Scholar 

  4. Chunchun, H., Feng, W., Chong, G., Peng, L., et al., J. Mater. Chem. C, 2015, vol., pp. 5065–5072.

  5. Lidong, S., Sci. China Mater., 2016, vol. 59, no. 10, pp. 817–824.

    Article  Google Scholar 

  6. Novruzova, A.A., Ramazanov, M.A., Chianese, A., Hajiyeva, F.V., et al., Chem. Eng. Trans., 2017, vol. 60, pp.  61–66.

    Google Scholar 

  7. Wang, L., Wei, H., Fan, Y., Liu, X., and Zhan, J., Nanoscale Res. Lett., 2009, vol. 4, no. 6, pp. 558–564.

    Article  Google Scholar 

  8. Khan, S., Jiang, Z., Premathilka, S.M., Antu, A., Hu, J., et al., J. Nanomater., 2017, vol. 2, no. 60, pp. 3685–3690.

    Google Scholar 

  9. Durmusoglu, E.G., Yildizhan, M.M., Gulgun, M.A., et al., J. Phys. Chem. C, 2017, vol. 121, no. 45, pp. 25520–25530.

    Article  Google Scholar 

  10. Magerramov, A.M., Ramazanov, M.A., and Hajiyeva, F.V., Optoelectron. Adv. Mater., 2008, vol. 2, no. 11, pp. 743–746.

    Google Scholar 

  11. Magerramov, A.M., Ramazanov, M.A., and Gadjiyeva, F.V., Optoelectron. Adv. Mater., Rapid Commun., 2009, vol. 3, no. 12, pp. 1348–1353.

  12. Magerramov, A.M., Ramazanov, M.A., Hajiyeva, F.V., and Alieva, S.G., J. Appl. Electrochem., 2011, vol. 47, no. 5, pp. 428–432.

    Google Scholar 

  13. Ramazanov, M.A., Hajiyeva, F.V., Maharramov, A.M., Shirinova, H.A., et al., Proc. Int. Conf. of Young Scientists “Problems of Physics and Astronomy,” May 25, 2018, Baku: Baku State Univ., 2018, pp. 30–36.

  14. Ramazanov, M.A., Hajiyeva, F.V., Shirinova, H.A., and Mamedov, H.M., Int. J. Mod. Phys. B, 2019, vol. 33, no. 10, 1950083.

  15. Ramazanov, M.A., Hajiyeva, F.V., and Maharramov, A.M., Integr. Ferroelectr., 2019, vol. 192, no. 1, pp. 103–112.

    Article  Google Scholar 

  16. Magerramov, A.M., Ramazanov, M.A., Hajiyeva, F.V., and Nuriyeva, S.G., Proc. Int. Conf. “Modern Trends in Physics,” April 20–22, 2017, Baku: Baku State Univ., 2017, pp. 7–11.

  17. Maharramov, A.M., Ramazanov, M.A., Ahmadova, A.B., Hajiyeva, F.V., et al., Digital J. Nanomater. Biosci., 2016, vol. 11, no. 3, pp. 781–786.

    Google Scholar 

  18. Maharramov, A.M., Ramazanov, M.A., and Hajiyeva, F.V., Chalcogenide Lett., 2016, vol. 13, no. 1, pp. 35–40.

    Google Scholar 

  19. Maharramov, A.M., Ramazanov, M.A., Sultanova, J.R., Hajiyeva, F.V., et al., J. Optoelectron. Biomed. Mater., 2016, vol. 8, no. 3, pp. 113–118.

    Google Scholar 

  20. Maharramov, A.M., Ramazanov, M.A., Hajiyeva, F.V., and Amirov, S.S., J. Optoelectron. Biomed. Mater., 2016, vol. 8, no. 1, pp. 15–20.

    Google Scholar 

  21. Magerramov, A.M., Ramazanov, M.A., Hajiyeva, F.V., and Guliyeva, V.M., J. Appl. Electrochem., 2011, vol. 9, no. 5, pp. 133–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Hajiyeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiyeva, F.V. New Hybrid Polymer Nanocomposites Based on Polyvinylidene Fluoride and CdS/ZnS Nanoparticles: Structure and Dielecric Properties. Surf. Engin. Appl.Electrochem. 56, 649–655 (2020). https://doi.org/10.3103/S1068375520060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520060058

Keywords:

Navigation