Log in

Parameterizing Heat and Moisture Exchange in a Regional Thermodynamic Model of Sea Ice

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The prevailing types of the atmospheric stratification over the snow-ice cover at the top of Taganrog Bay for eleven winter seasons of 2007/2008–2017/2018 have been determined using the numerical experiments on reproducing the seasonal variations in the sea ice thickness. Series of calculations both with the constant transfer coefficients and with the coefficients obtained taking into account the surface stratification of the atmosphere have been carried out. The model results of both series have been compared with each other and with in situ measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. All-Russian Research Institute of Hydrometeorological Information–World Data Center, http://meteo.ru [in Russian].

  2. N. N. D’yakov, T. Yu. Timoshenko, A. A. Belogudov, and S. B. Gorbach, The Atlas of Ice in the Black and Azov Seas (Sevastopol, 2015) [in Russian].

  3. Unified State World Ocean Information System (ESIMO), http://193.7.160.230/web/esimo/azov/ice/ [in Russian].

  4. D. D. Zav’yalov and T. A. Solomakha, "Influence of Thermodynamic Model Resolution on the Simulation of Ice Thickness Evolution in the Sea of Azov," Meteorol. Gidrol., No. 7 (2021) [Russ. Meteorol. Hydrol., No. 7, 46 (2021)].

    Article  Google Scholar 

  5. A. P. Makshtas, B. V. Ivanov, and V. F. Timachev, "Comparison of the Turbulent Energy and Mass Exchange Parametrizations in the Stably Stratified Atmospheric Surface Layer," Problemy Arktiki i Antarktiki, No. 3 (2012).

  6. A. S. Monin and A. M. Obukhov, "Basic Patterns of Eddy Mixing in the Atmospheric Surface Layer," Trudy Geofiz. Inst. AN SSSR, No. 24 (1954).

  7. E. L. Andreas, "A Theory for Scalar Roughness and Scalar Transfer Coefficients over Snow and Sea Ice," Boundary-Layer Meteorol., 38 (1987).

    Article  Google Scholar 

  8. E. G. Banke, S. D. Smith, and R. J. Anderson, "Drag Coefficient at AIDJEX from Sonic Anemometer Measurement," in Sea Ice Processes and Models, Ed. by R. S. Pritchard (University of Washington Press, Seattle, 1980).

    Google Scholar 

  9. J. A. Businger, J. C. Wyngaard, Y. Izumi, and E. F. Bradley, "Flux-profile Relationships," J. Atmos. Sci., 28 (1971).

    Article  Google Scholar 

  10. B. Cheng and J. Launiainen, "A One-dimensional Thermodynamic Air–Ice–Water Model: Technical and Algorithm Description Report," Meri, 37 (1998).

  11. B. Cheng, J. Launianen, T. Vihma, and J. Uotila, "Turbulent Surface Fluxes and Air-ice Coupling in the Baltic Air-Sea-Ice Study (BASIS)," Ann. Glaciol., No. 1, 33 (2001).

    Article  Google Scholar 

  12. A. J. Dyer, "A Review of Flux-profile Relationship," Boundary-Layer Meteorol., 7 (1974).

    Article  Google Scholar 

  13. A. A. Grachev, E. I. Andreas, C. W. Fairall, P. S. Guest, and P. O. Persson, "SHEBA Flux-profile Relationships in the Stable Atmospheric Boundary Layer," Boundary-Layer Meteorol., 124 (2007).

    Article  Google Scholar 

  14. A. A. M. Holtslag and H. A. R. de Bruin, "Applied Modeling of the Nighttime Surface Energy Balance over Land," J. Appl. Meteorol. Climatol., 27 (1988).

    Article  Google Scholar 

  15. U. Hogstrom, "Non-dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-evaluation," Boundary-Layer Meteorol., 42 (1988).

  16. E. C. Hunke, W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, CICE: The Los Alamos Sea Ice Model. Documentation and Software User’s Manual. Version 5.1 LA-CC-06-012 (Los Alamos National Laboratory, 2015), http://oceans11.lanl.gov/trac/CICE/attachment/wiki/WikiStart/cicedoc.pdf.

  17. J. Launiainen, "Derivation of the Relationship between the Obukhov Stability Parameter and the Bulk Richardson Number for the Flux-profile Studies," Boundary-Layer Meteorol., 76 (1995).

    Article  Google Scholar 

  18. S. D. Smith, "Wind Stress and Heat Flux over the Ocean in Gale Force Winds," J. Phys. Oceanogr., 10 (1980).

    Article  Google Scholar 

  19. Y. Li, Z. Gao, D. H. Lenschow, and F. Chen, "An Improved Approach for Parameterizing Surface-layer Turbulent Transfer Coefficients in Numerical Models," Boundary-Layer Meteorol., 137 (2010).

    Article  Google Scholar 

  20. D. D. Zavyalov and T. A. Solomakha, "Parameterization of Solar Radiation Absorption by Snow-ice Cover in the Thermodynamic Sea Ice Model of the Sea of Azov," Phys. Oceanogr., No. 5, 28 (2021).

    Article  Google Scholar 

  21. S. S. Zilitinkevich, A. A. Grachev, and C. W. Fairall, "Scaling Reasoning and Field Data on the Sea-surface Roughness Lengths for Scalars," J. Atmos. Sci., 58 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Zav’yalov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2024, No. 3, pp. 31-41. https://doi.org/10.52002/0130-2906-2024-3-31-41.

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zav’yalov, D.D., Solomakha, T.A. Parameterizing Heat and Moisture Exchange in a Regional Thermodynamic Model of Sea Ice. Russ. Meteorol. Hydrol. 49, 203–211 (2024). https://doi.org/10.3103/S1068373924030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373924030038

Keywords

Navigation