Log in

Acidity of Aerosol Particles in the Rural Atmosphere

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Estimates for the acidity of aerosol particles in the rural atmosphere over Wingene (Belgium) are presented. The results of processing monitoring data using data of the control of meteorological conditions, gas impurities, ion composition, and mass concentration of aerosol particles, as well as the use of thermodynamic methods showed that the level of acidity of aerosol particles in the atmosphere is unexpectedly high (\(\mathrm{pH}\approx 3.5{-}4.3\)) despite their sampling in the background area. It is found that the variability of particle acidity is mainly determined by fluctuations in relative humidity and the content of gas-phase ammonia in the air. In this case, the lower the relative humidity is, the higher the acidity of particles is, which reflects the variability of moisture content in particles and the solubility of ammonium nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. A. N. Yermakov, A. E. Aloyan, and V. O. Arutyunyan, “Seasonal Variability of the Ion Composition, Phase State, and Mass Concentration of Aerosol in the Rural and Urban Atmosphere over Belgium (2001–2003),” Meteorol. Gidrol., No. 3 (2020) [Russ. Meteorol. Hydrol., No. 3, 45 (2020)].

  2. A. N. Yermakov, A. E. Aloyan, T. V. Khodzer, L. P. Golobokova, and V. O. Arutyunyan, “On the Influence of Atmospheric Chemical Reactions on the Ion Composition of Aerosol Particles in the Baikal Region,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 2, 43 (2007)].

  3. A. N. Yermakov, L. P. Golobokova, O. G. Netsvetaeva, A. E. Aloyan, V. O. Arutyunyan, and T. V. Khodzher, “On the Nature of Aerosol Particles in the Atmosphere of Irkutsk,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 54 (2018) [Izv., Atmos. Oceanic Phys., No. 2, 54 (2018)].

  4. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Inostrannaya Literatura, Moscow, 1963) [in Russian].

    Google Scholar 

  5. B. V. Romanovskii, Catalysis Fundamentals (Binom: Laboratoriya Znanii, Moscow, 2017) [in Russian].

    Google Scholar 

  6. H. Akimoto, Atmospheric Reaction Chemistry (Springer Japan, 2016).

    Book  Google Scholar 

  7. G. P. Brasseur, J. J. Orlando, and G. S. Tyndall, Atmospheric Chemistry and Global Change (Oxford University Press, New York, 1999).

    Google Scholar 

  8. CCSP 2009: Atmospheric Aerosol Properties and Climate Impacts, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Ed. by M. Chin, R. A. Kahn, and S. E. Schwartz (NASA, Washington, DC, 2009).

  9. S. L. Clegg, P. Brimblecombe, and A. S. Wexler, “A Thermodynamic Model of the System H\(^{ + }\)–NH\(_4^+\)–SO\(_4^{2-}\)–NO\(_3^-\)–H\(_2\)O at Tropospheric Temperatures,” J. Phys. Chem. A, No. 12, 102 (1998).

  10. S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, J. He, K. Yoo, J. Beauchamp, R. Hodyss, R. Flagan, and J. Seinfeld, “Particle Phase Acidity and Oligomer Formation in Secondary Organic Aerosol,” Environ. Sci. Technol., No. 24, 38 (2004).

    Article  Google Scholar 

  11. R. V. Grieken, Optimization and Environmental Application of TW-EPMA for Single Particle Analysis (Antwerpen University, 2005).

  12. http://www.aim.env.uea.ac.uk/aim/aim.php.

  13. M. Z. Jacobsen, “Development and Application of a New Air Pollution Modeling System. II. Aerosol Module Structure and Design,” Atmos. Environ., 31 (1997).

    Article  Google Scholar 

  14. M. Jang, N. M. Czoschke, S. Lee, and R. M. Kamens, “Heterogeneous Atmospheric Aerosol Production by Acid Catalyzed Particle-phase Reactions,” Science, 298 (2002).

    Article  Google Scholar 

  15. M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, and J. Wilson, “Organic Aerosol and Global Climate Modeling: A Review,” Atmos. Chem. Phys., No. 4, 5 (2005).

    Article  Google Scholar 

  16. J. H. Kroll, A. W. H. Chan, N. L. Ng, R. C. Flagan, and J. H. Seinfeld, “Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation,” Environ. Sci. Technol., No. 10, 41 (2007).

    Article  Google Scholar 

  17. Z. F. Lu, J. M. Hao, H. Takekawa, L. H. Hu, and J. H. Li, “Effect of High Concentrations of Inorganic Seed Aerosols on Secondary Organic Aerosol Formation in the m-xylene/NO\(_{x}\) Photooxidation System,” Atmos. Environ., No. 4, 43 (2009).

  18. A. Nenes, S. N. Pandis, and C. Plinis, “ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols,” Aquatic Geochem., 4 (1998).

  19. C. Pilinis and J. H. Seinfeld, “Continued Development of a General Equilibrium Model for Inorganic Multicomponent Atmospheric Aerosols,” Atmos. Environ., 21 (1987).

    Article  Google Scholar 

  20. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics. From Air Pollution to Climate Change (Wiley-Interscience, New York, 1997).

    Google Scholar 

  21. J. E. Shilling, Q. Chen, S. M. King, T. Rosenoern, J. Kroll, D. Worsnop, P. DeCarlo, A. Aiken, D. Sueper, J. Jimenez, and S. T. Martin, “Loading-dependent Elemental Composition of \(\alpha\)-pinene SOA Particles,” Atmos. Chem. Phys., 9 (2009).

    Article  Google Scholar 

  22. A. W. Stelson, M. E. Basset, and J. H. Seinfeld, “Thermodynamic Equilibrium Properties of Aqueous Solutions of Nitrate and Sulfate Ammonium,” in Chemistry of Particles, Fogs and Rain, Ed. by J. L. Duham (Butterworth-Heinemann, Newton, Mass., 1984).

  23. Y. Zhang, B. Pun, K. Vijayaraghavan, S.-Y. Wu, C. Seigneur, S. Pandis, M. Jacobson, A. Nenes, and J. Seinfeld, “Development and Application of the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID),” J. Geophys. Res., 109 (2004).

  24. R. Zhao, C. M. Kenseth, Y. Huang, N. Dalleska, X. M. Kuang, J. Chen, S. Paulson, and J. Seinfeld, “Rapid Aqueous-phase Hydrolysis of Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids,” J. Phys. Chem. A., No. 23, 122 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yermakov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 11, pp. 56-63. https://doi.org/10.52002/0130-2906-2021-11-56-63.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yermakov, A.N., Aloyan, A.E. & Arutyunyan, V.O. Acidity of Aerosol Particles in the Rural Atmosphere. Russ. Meteorol. Hydrol. 46, 762–767 (2021). https://doi.org/10.3103/S1068373921110054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921110054

Keywords

Navigation