Log in

Chemically Activated Carbon for the Adsorption of Aniline from Water

  • CHEMISTRY
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of aniline from aqueous solution on carbon sorbents is investigated. The sorbents are derived from D and G Kuznetsk Basin coal by chemical activation using potassium hydroxide at 800°C, when the coal/alkali ratio (by mass) is 1.0 : 0.5 and 1.0 : 1.0. The sorbents consist mainly of micropores, and their specific surface is relatively high (700–1340 m2/g). The experimental adsorption isotherms are plotted. On that basis, the parameters of the Langmuir, Freundlich, Dubinin–Astakhov, and BET sorption models are calculated. The models are appropriate for the description of aniline adsorption (R2 > 0.9). The Langmuir model is the most accurate. The state parameters indicate that the adsorption of aniline by this means is very effective. The process may be described as monomolecular adsorption on the surface of microporous sorbents. The thermomechanical characteristics of the adsorption process are low. That indicates physical adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kaufman A.A., K.G.D., Tekhnologiya koksokhimicheskogo proizvodstva (Technology of Coking), Ekaterinburg: VUKhIN–NKA, 2005.

  2. Mikhailuts, A.P., Zaitsev, V.I., Ivanov, S.V., and Zubitskii, B.D., Ekologo-gigienicheskie problemy gorodov s razvitoi khimicheskoi promyshlennost’yu (Ecological-Hygienic Problems of Cities with Developed Chemical Industry), Novosibirsk: TsERIS, 1997.

  3. Martynenko, E.S., Solodovnichenko, V.S., Kryazhev, Y.G., Arbuzov, A.B., Likholobov, V.A., and Kalinina, T.A., Alkaline complexes of polyvinylene chlorides and their capacity for reversibly sorbing phenol, Solid Fuel Chem., 2015, vol. 49, no. 6, pp. 387–391. https://doi.org/10.3103/S0361521915060063

    Article  CAS  Google Scholar 

  4. Hao, Yu., Sun, G., Fan, T., Tang, X., Zhang, J., Liu, Yo., Zhang, N., Zhao, L., Zhong, R., and Peng, Yo., In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse, J. Hazard. Mater., 2020, vol. 399, p. 122981. https://doi.org/10.1016/j.jhazmat.2020.122981

    Article  CAS  PubMed  Google Scholar 

  5. Ivanov, N.N., Zykov, I.Yu., Tsvetkov, V.E., and Dudnikova, Yu.N., Phenol adsorption from aqueous solutions by chemically activated carbon sorbents, Khim. Interesakh Ustoich. Razvit., 2020, no. 28, pp. 549–555. https://doi.org/10.15372/khur2020262

  6. Waheed, A., Baig, N., Ullah, N., and Falath, W., Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances, J. Environ. Manage., 2021, vol. 287, p. 112360. https://doi.org/10.1016/j.jenvman.2021.112360

    Article  CAS  PubMed  Google Scholar 

  7. Karthikeyan, S., Viswanathan, K., Boopathy, R., Maharaja, P., and Sekaran, G., Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon, J. Ind. Eng. Chem., 2015, vol. 21, pp. 942–950. https://doi.org/10.1016/j.jiec.2014.04.036

    Article  CAS  Google Scholar 

  8. Jangid, P. and Prabhu Inbaraj, M., Applications of nanomaterials in wastewater treatment, Mater. Today: Proc., 2021, vol. 43, pp. 2877–2881. https://doi.org/10.1016/j.matpr.2021.01.126

    Article  CAS  Google Scholar 

  9. Huang, Q., Hu, D., Chen, M., Bao, C., and **, X., Sequential removal of aniline and heavy metal ions by jute fiber biosorbents: A practical design of modifying adsorbent with reactive adsorbate, J. Mol. Liq., 2019, vol. 285, pp. 288–298. https://doi.org/10.1016/j.molliq.2019.04.115

    Article  CAS  Google Scholar 

  10. Yu, S., Wang, X., Chen, Z., Wang, J., Wang, S., Hayat, T., and Wang, X., Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution, J. Hazard. Mater., 2017, vol. 321, pp. 111–120. https://doi.org/10.1016/j.jhazmat.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  11. Gupta, V.K., Nayak, A., and Agarwal, S., Performance evaluation and application of oxygen enriched waste rubber tire adsorbent for the removal of hazardous aniline derivatives from waste water, Chem. Eng. J., 2012, vol. 203, pp. 447–457. https://doi.org/10.1016/j.cej.2012.07.051

    Article  CAS  Google Scholar 

  12. Hu, R., Wang, X., Dai, S., Shao, D., Hayat, T., and Alsaedi, A., Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions, Chem. Eng. J., 2015, vol. 260, pp. 469–477. https://doi.org/10.1016/j.cej.2014.09.013

    Article  CAS  Google Scholar 

  13. Vieira, Ya., Netto, M.S., Lima, É.C., Anastopoulos, I., Oliveira, M.L.S., and Dotto, G.L., An overview of geological originated materials as a trend for adsorption in wastewater treatment, Geosci. Front., 2022, vol. 13, no. 1, p. 101150. https://doi.org/10.1016/j.gsf.2021.101150

    Article  CAS  Google Scholar 

  14. Sharma, A., Mangla, D., Shehnaz, and Chaudhry, S.A., Recent advances in magnetic composites as adsorbents for wastewater remediation, J. Environ. Manage., 2022, vol. 306, p. 114483. https://doi.org/10.1016/j.jenvman.2022.114483

    Article  CAS  PubMed  Google Scholar 

  15. Mukhin, V.M., Tarasov, A.V., and Klushin, V.N., Aktivnye ugli Rossii (Active Coals of Russia), Moscow: Metallurgiya, 2000.

  16. Krasnova, T.A., Beleva, O.V., and Kirsanov, M.P., Using active coals in processes of water preparation and water disposal, Tekh. Tekhnol. Pishchevykh Proizvodstv, 2012, no. 3, pp. 1–11.

  17. Guseva, T.V., Gidrokhimicheskie pokazateli okruzhayushchei sredy. Spravochnye materialy (Hydrochemical Indicators of Environment: Reference Materials), Moscow: Ekolain, 2000.

  18. Cai, Yi-D., Liu, D.-M., Liu, Zh.-H., Zhou, Yi.-F., and Che, Ya., Evolution of pore structure, submaceral composition and produced gases of two Chinese coals during thermal treatment, Fuel Process. Technol., 2017, vol. 156, pp. 298–309. https://doi.org/10.1016/j.fuproc.2016.09.011

  19. Janani, R., Gurunathan, B., Sivakumar, K., Varjani, S., Ngo, H.H., and Gnansounou, E., Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production, Environ. Res., 2022, vol. 203, p. 111815. https://doi.org/10.1016/j.envres.2021.111815

    Article  CAS  Google Scholar 

  20. Siddiqui, M.N., Ali, I., Asim, Mohd., and Chanbasha, B., Quick removal of nickel metal ions in water using asphalt-based porous carbon, J. Mol. Liq., 2020, vol. 308, p. 113078. https://doi.org/10.1016/j.molliq.2020.113078

    Article  CAS  Google Scholar 

  21. Zykov, I.Yu., Dudnikova, Yu.N., and Tsvetkov, V.E., Texture characteristics of the sorbents obtained from the coal of kuzbass, Khim. Interesakh Ustoich. Razvit., 2019, no. 27, pp. 592–596. https://doi.org/10.15372/khur2019179

  22. Nechaeva, T.S., Fedorova, N.I., and Ismagilov, Z.R., Influence of activation on the pore structure of adsorbents obtained from coal–alkali mixtures, Coke Chem., 2017, vol. 60, no. 6, pp. 239–242. https://doi.org/10.3103/s1068364x17060072

    Article  Google Scholar 

  23. Tamarkina, Y.V., Kucherenko, V.A., and Shendrik, T.G., Interrelation of gas generation and pore formation on the alkaline activation of brown coal, Solid Fuel Chem., 2015, vol. 49, no. 2, pp. 91–98. https://doi.org/10.3103/S036152191502010X

    Article  CAS  Google Scholar 

  24. Saberova, V.A., Tamarkina, Yu.V., and Kucherenko, V.A., Changing the structure of brown coal by alkaline activation with thermal shock, Solid Fuel Chem., 2019, vol. 53, no. 3, pp. 135–144. https://doi.org/10.3103/S0361521919030091

    Article  CAS  Google Scholar 

  25. Farberova, E.A., Olontsev, V.F., and Tin’gaeva, E.A., Effect of the parameters of the thermal modification of brown coals on their sorption properties, Solid Fuel Chem., 2017, vol. 51, no. 3, pp. 177–182. https://doi.org/10.3103/S0361521917030041

    Article  CAS  Google Scholar 

  26. Song, G., Deng, R., Yao, Z., Chen, H., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., Schobert, H., and Baltrusaitis, J., Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation, Fuel, 2020, vol. 275, p. 117921. https://doi.org/10.1016/j.fuel.2020.117921

    Article  CAS  Google Scholar 

  27. Zhou, Yo., Zhang, L., and Cheng, Z., Removal of organic pollutants from aqueous solution using agricultural wastes: A review, J. Mol. Liq., 2015, vol. 212, pp. 739–762. https://doi.org/10.1016/j.molliq.2015.10.023

    Article  CAS  Google Scholar 

  28. Koganovskii, A.M., Ochistka i ispol’zovanie stochnykh vod v promyshlennom vodosnabzhenii (Purification and Use of Waste Waters in Industrial Water Management), Moscow: Khimiya, 1983.

  29. Pretsch, E., Bühlmann, P., and Badertscher, M., Structure Determination of Organic Compounds: Tables of Spectral Data, Berlin: Springer, 2009, 4th ed. https://doi.org/10.1007/978-3-540-93810-1

    Book  Google Scholar 

  30. Tovbin, Yu.K., Molekulyarnaya teoriya adsorbtsii v poristykh telakh (Molecular Theory of Adsorption in Porous Bodies), Moscow: Fizmatlit, 2012.

  31. Smirnov, A.D., Sorbtsionnaya ochistka vody (Sorption Purification of Water), Leningrad: Khimiya, 1982.

  32. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Foundations of Adsorption Equipment), Moscow: Khimiya, 1984.

  33. Luk’yanov, A.N. and Kononov, O.N., Neodnorodnye sorbenty. Monografiya (Heterogeneous Sorbents: Monograph), Krasnoyarsk: Sib. Fed. Univ., 2012.

  34. Belyaeva, O.V. and Cherentaeva, M.A., Description of aniline adsorption isoterms from water solutions by fractioned active coals, Evraziiskii Soyuz Uchenykh, 2015, no. 6, pp. 10–12.

  35. Koganovskii, A.M., Klimenko, N.A., Levchenko, T.M., and Roda, I.G., Adsorbtsiya organicheskikh veshchestv iz vody (Adsorption of Organic Substances from Water), Leningrad: Khimiya, 1990.

Download references

ACKNOWLEDGMENTS

We thank O.S. Efimova for the elemental analysis; and Yu.N. Dudnikova for determining the textural characteristics of the sorbents.

This research was conducted on equipment at the Collective Use Center, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences.

Funding

Financial support was provided by the Russian Science Foundation within the framework of state support for the Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences (project 121031500194-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Yu. Zykov, N. I. Fedorova, V. E. Tsvetkov or N. N. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykov, I.Y., Fedorova, N.I., Tsvetkov, V.E. et al. Chemically Activated Carbon for the Adsorption of Aniline from Water. Coke Chem. 66, 511–517 (2023). https://doi.org/10.3103/S1068364X2370117X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X2370117X

Navigation