Log in

Effects of Chain Alkanes on Restraining Water Re-Adsorption of Dried Indonesian Lignite

  • MISCELLANEOUS
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

An Indonesian lignite (IN) was hydrothermally treated at 150–250°C for 20 min and the treated samples were mixed with different amounts of different chain alkanes. The water re-adsorption tests were measured using a desiccator method. To reveal the mechanism of chain alkanes restraining water re-adsorption of lignite, the changes in some physicochemical properties were characterized by Fourier transform infrared spectrometry, N2 adsorption-desorption, and thermogravimetric (TG) analysis. The results showed that the water re-adsorption contents of all samples decreased with increasing content of chain alkanes; this is because the addition of chain alkanes could cover some oxygen-containing functional groups on the surface of lignite and block partial pores in lignite, which became much obvious with increasing amount of chain alkanes. Moreover, the water re-adsorption content first increased and then decreased as the chain length of alkanes increased, and octane showed the optimum effect on restraining water re-adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Muthusamy Karthikeyan, Wu Zhonghua, and Arun S. Mujumdar, Low-rank coal drying technologies—Current status and new developments, Drying Technol., 2009, vol. 27, no. 3, pp. 403–415. https://doi.org/10.1080/07373930802683005

  2. Arash, T., Yu, J., Han, Y., Yin, F., Bhattacharya, S., and Stokie, D., Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air, Energy Fuel, 2012, vol. 26, no. 6, pp. 3651–3660. https://doi.org/10.1021/ef300559b

    Article  CAS  Google Scholar 

  3. Man, C., Zhu, X., Gao, X., and Che, D., Combustion and pollutant emission characteristics of lignite dried by low temperature air, Drying Technol., 2015, vol. 33, no. 5, pp. 616–631. https://doi.org/10.1080/07373937.2014.967402

    Article  CAS  Google Scholar 

  4. Liu, M., Yan, J., Bai, B., Chong, D., Guo, X., and **ao, F., Theoretical study and case analysis for a predried lignite-fired power system, Drying Technol., 2011, vol. 29, no. 10, pp. 1219–1229. https://doi.org/10.1080/07373937.2011.582559

    Article  CAS  Google Scholar 

  5. Liu, X., Fang, B., Zhao, Z., **e, R., Lei, Z., Ling, Q., and Cui, P., Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment, J. Iron Steel Res. Int., 2019, vol. 26, no. 10, pp. 1052–1060. https://doi.org/10.1007/s42243-019-00261-7

    Article  CAS  Google Scholar 

  6. Yang, Y., **g, X., Li, Z., Liu, X., Zhang, Y., and Chang, L., Effect of drying conditions on moisture re-adsorption performance of dewatered lignite, Drying Technol., 2013, vol. 31, no. 12, pp. 1430–1437. https://doi.org/10.1080/07373937.2013.797429

    Article  CAS  Google Scholar 

  7. Yu, J., Tahmasebi, A., Han, Y., Yin, F., and Li, C., A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization, Fuel Process. Technol., 2013, vol. 106, pp. 9–20. https://doi.org/10.1016/j.fuproc.2012.09.051

    Article  CAS  Google Scholar 

  8. Liu, X., Hirajima, T., Nonaka, M., and Sasaki, K., Investigation of the changes in hydrogen bonds during low-temperature pyrolysis of lignite by diffuse reflectance FT-IR combined with forms of water, Ind. Eng. Chem. Res., 2015, vol. 54, no. 36, pp. 8971–8978. https://doi.org/10.1021/acs.iecr.5b02474

    Article  CAS  Google Scholar 

  9. Liu, X., Hirajima, T., Nonaka, M., Mursito, A., and Sasaki, K., Use of FTIR combined with forms of water to study the changes in hydrogen bonds during low-temperature heating of lignite, Drying Technol., 2016, vol. 34, no. 2, pp. 185–193. https://doi.org/10.1080/07373937.2015.1026984

    Article  CAS  Google Scholar 

  10. Zou, L., **, L., Li, Y., Zhu S., and Hu H., Effect of tetrahydrofuran extraction on lignite pyrolysis under nitrogen, J. Anal. Appl. Pyrol., 2015, vol. 112, pp. 113–120. https://doi.org/10.1016/j.jaap.2015.02.010

    Article  CAS  Google Scholar 

  11. Ge, L., Zhang, Y., Xu, C., Wang, Z., Zhou J., and Cen, K., Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals, Appl. Therm. Eng., 2015, vol. 90, pp. 174–181. https://doi.org/10.1016/j.applthermaleng.2015.07.015

    Article  CAS  Google Scholar 

  12. Fu, J. and Wang, J., Enhanced slurryability and rheological behaviors of two low-rank coals by thermal and hydrothermal pretreatments, Powder Technol., 2014, vol. 266, pp. 183–190. https://doi.org/10.1016/j.powtec.2014.06.034

    Article  CAS  Google Scholar 

  13. Man, C., Liu, Y., Zhu, X., and Che, D., Moisture readsorption performance of air-dried and hydrothermally dewatered lignite, Energy Fuel, 2014, vol. 28, no. 8, pp. 5023–5030. https://doi.org/10.1021/ef501255n

    Article  CAS  Google Scholar 

  14. Sakaguchi, M., Laursen, K., Nakagawa, H., and Miura, K., Hydrothermal upgrading of Loy Yang brown coal—Effect of upgrading conditions on the characteristics of the products, Fuel Process. Technol., 2008, vol. 89, no. 4, pp. 391–396. https://doi.org/10.1016/j.fuproc.2007.11.008

    Article  CAS  Google Scholar 

  15. Takuo, S., Toshinori, I., and Haruo, K., Water adsorption and desorption of upgraded brown coal. Part 1: Isotherms of adsorption and desorption, Energy Fuel, 2014, vol. 28, no. 8, pp. 4986–4992. https://doi.org/10.1021/ef501029r

    Article  CAS  Google Scholar 

  16. Hokyung, C., Chinnasamy, T., Sangdo, K., Youngjoon, R., Jeonghwan, L., and Sihyun, L., Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal, Fuel Process. Technol., 2011, vol. 92, no. 10, pp. 2005–2010. https://doi.org/10.1016/j.fuproc.2011.05.025

    Article  CAS  Google Scholar 

  17. Liu, X., Hirajima, T., Nonaka, M., and Sasaki, K., Experimental study on freeze drying of Loy Yang lignite and inhibiting water re-adsorption of dried lignite, Colloids Surf., A, 2017, vol. 520, pp. 146–153. https://doi.org/10.1016/j.colsurfa.2017.01.076

    Article  CAS  Google Scholar 

  18. Liu, Y., and Liu, S., Wettability modification of lignite by adsorption of dodecyl based surfactants for inhibition of moisture re-adsorption, J. Surfactants Deterg., 2017, vol. 20, pp. 707–716. https://doi.org/10.1007/s11743-017-1937-9

    Article  CAS  Google Scholar 

  19. Geng, W., Liu, S., Guo, J., and Zhang, L., Decrease in hydrophilicity and inhibition moisture re-adsorption of lignite using binary surfactant mixtures with different hydrophilic head-groups, J. Mol. Liq., 2019, vol. 276, pp. 638–643. https://doi.org/10.1016/j.molliq.2018.12.003

    Article  CAS  Google Scholar 

  20. Liu, S., Liu, X., Guo, Z., Liu, Y., Guo, J., and Zhang, S., Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant, Colloids Surf., A, 2016, vol. 508, pp. 286–293. https://doi.org/10.1016/j.colsurfa.2016.08.073

    Article  CAS  Google Scholar 

  21. Liu, X., Li, G., Zhao, H., Cheng, F., **e, R., Zhao Z., and Cui, P., Upgrading deashed Huadian oil shale using low-temperature pyrolysis treatment and its application in coal-blending coking, Fuel Process. Technol., 2021, vol. 223, p. 106994. https://doi.org/10.1016/j.fuproc.2021.106994

    Article  CAS  Google Scholar 

  22. Liu, X., Li, G., Zhao, H., Ye, Y., **e, R., Zhao, Z., Lei, Z., and Cui, P., Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process, Fuel, 2022, vol. 321, p. 124023. https://doi.org/10.1016/j.fuel.2022.124023

    Article  CAS  Google Scholar 

  23. Liu, X., Cheng, F., Hirajima, T., and Cui, P., Effects of activated carbon on optimization of microwave irradiation upgrading of Loy Yang lignite, Asia-Pac. J. Chem. Eng., 2019, vol. 14, no. 1, p. e2276. https://doi.org/10.1002/apj.2276

    Article  CAS  Google Scholar 

  24. Bergins, C., Janine, H., Karl, S., and Chaffee, A., Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coal, Fuel, 2007, vol. 86, nos. 1–2, pp. 3–16. https://doi.org/10.1016/j.fuel.2006.06.019

    Article  CAS  Google Scholar 

  25. Wang, T., Li, C., Zhou, B., Zhang, Y., Zhang, M., Yang, H., and Wang, Z., Experimental investigation of thermal effect in coal pyrolysis process, Fuel Process. Technol., 2020, vol. 200, p. 106269. https://doi.org/10.1016/j.fuproc.2019.106269

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 22278001), the Natural Science Foundation of Anhui Provincial Education Department (no. KJ2021A0407), Anhui Provincial Postdoctoral Science Foundation (no. 2021B538), and Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology (no. CHV21-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **angchun Liu or ** Cui.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan Song, Han, K., Fang, Y. et al. Effects of Chain Alkanes on Restraining Water Re-Adsorption of Dried Indonesian Lignite. Coke Chem. 66, 163–170 (2023). https://doi.org/10.3103/S1068364X23700540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X23700540

Keywords:

Navigation