Log in

Preliminary Discharge of Spent Lithium Batteries in Salt Solution for Safe Disposal

  • ENVIRONMENTAL PROTECTION
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Before the disposal of lithium–cobalt batteries and lithium–manganese batteries, they must first be discharged to a voltage no greater than 0.5 V. Above 0.5 V, the batteries will catch alight and explode on being opened. Various methods of battery discharge are considered: self-discharge using a flashlight; and battery immersion in NaCl solutions of concentration 5, 10, or 15 wt %. Discharge in salt solution is associated with electrolysis. This process may be theoretically described by means of the basic principles of chloride electrolysis. The effective concentration of the salt solution in battery discharge is found to be 10 wt %. Graphs showing the discharge of LiMn2O4 and LiCoO2 batteries over time are plotted, for a motionless medium. The discharge time is decreased in reactors where mechanical mixers ensure transient or turbulent motion of the liquid (assessed on the basis of the Reynolds number ReM). By atomic-emission spectrometry, the components formed in the residue after battery discharge are determined. On the basis of the results, mixer parameters for preliminary discharge of lithium–cobalt and lithium–manganese batteries are recommended, such that subsequent battery disposal in industrial conditions poses no environmental risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Nazarov, V.I., Retivov, V.M., Gonopolsky, A.M., Makarenkov, D.A., Popov, A.P., and Aflyatunova, G.R., Study of the technology of using complex lithium-cobalt current sources using combined processes of mechanical processing, leaching and extraction, Ekol. Prom-st. Ross., 2022, vol. 26, no. 5, pp. 10–16. https://doi.org/10.18412/1816-0395-2022-5-10-16

    Article  Google Scholar 

  2. Velázquez-Martínez, O., Valio, J., Santasalo-Aarnio, A., Reuter, M., and Serna-Guerrero, R., A critical review of lithium-ion battery recycling processes from a circular economy perspective, Batteries, 2019, vol. 5, no. 4, p. 68. https://doi.org/10.3390/batteries5040068

    Article  CAS  Google Scholar 

  3. Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, Kh., and Lu, J., The recycling of spent lithium-ion batteries: A review of current processes and technologies, Electrochem. Energy Rev., 2018, vol. 1, pp. 461–482. https://doi.org/10.1007/s41918-018-0012-1

    Article  CAS  Google Scholar 

  4. Li, L., Dunn, J.B., Zhang, X.X., Gaines, L., Chen, R.J., Wu, F., and Amine, Kh., Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 2013, vol. 233, pp. 180–189. https://doi.org/10.1016/j.jpowsour.2012.12.089

    Article  CAS  Google Scholar 

  5. Retivov, V.M., Gonopolsky, A.M., Makarenkov, D.A., Nazarov, V.I., Popov, A.P., and Smirnova, A.V., Mechanical-chemical technology of utilization of lithium-cobalt current sources, Zashch. Okruzhayushchei Sredy Neftegazovom Komplekse, 2021, no. 6, pp. 49–53. https://doi.org/10.33285/2411-7013-2021-6(303)-49-53

  6. Self-discharge of Li-ion accumulators, or what capacity remains in accumulators after six months. https://18650pro.ru/raznoe/samorazrjad-li-ion-akkumuljatorov. Cited September 1, 2022.

  7. Kim, S., Bang, J., Yoo, J., Shin, Y., Bae, J., Jeong, J., Kim, K., Dong, P., and Kwon, K., A comprehensive review on the pretreatment process in lithium-ion battery recycling, J. Cleaner Prod., 2021, vol. 294, p. 126329. https://doi.org/10.1016/j.jclepro.2021.126329

    Article  CAS  Google Scholar 

  8. Ojanen, S., Lundström, M., Santasalo-Aarnio, A., and Serna-Guerrero, R., Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling, Waste Manage., 2018, vol. 76, pp. 242–249. https://doi.org/10.1016/j.wasman.2018.03.045

    Article  CAS  Google Scholar 

  9. Li, L., Ge, J., Wu, F., Chen, R., Chen, Sh., and Wu, B., Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard. Mater., 2010, vol. 176, nos. 1–3, pp. 288–293. https://doi.org/10.1016/j.jhazmat.2009.11.026

    Article  CAS  PubMed  Google Scholar 

  10. Li, J., Wang, G., and Xu, Zh., Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries, Waste Manage., 2016, vol. 52, pp. 221–227. https://doi.org/10.1016/j.wasman.2016.03.011

    Article  CAS  Google Scholar 

  11. Antipov, E.V., Mezhfakul’tetskii kurs lektsii Fundamental’nye osnovy nanotekhnologii. Sovremennye problemy nanotekhnologii. Lektsiya: Nanomaterialy dlya energetiki (Interfaculty Lecture Course on Fundamental Foundations of Nanotechnology: Modern Problems of Nanotechnology, Lecture: Nanomaterials for Power Engineering), Moscow: Nauchno-Obrazovatel’nyi Tsentr po Nanotekhnologiyam, 2011.

  12. **ao, J., Guo, J., Zhan, L., and Xu, Zh., A cleaner approach to the discharge process of spent lithium ion batteries in different solutions, J. Cleaner Prod., 2020, vol. 255, p. 120064. https://doi.org/10.1016/j.jclepro.2020.120064

    Article  CAS  Google Scholar 

  13. Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (Great Chemical Reference Book), Minsk: Sovremennaya Shkola, 2005.

  14. Helmenstine, A.M., Transition metal colors in aqueous solution. http://www.thoughtco.com/transition-metal-colors-in-aqueoussolution-608173. Cited September 4, 2022.

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-19-00403: Investigation of Processes of Mechanochemical Destruction of Cathode Materials during the Extraction of Cobalt and Its Compounds).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Nazarov, V. M. Retivov, D. A. Makarenkov, A. P. Popov, G. R. Aflyatunova or N. A. Kuznetsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, V.I., Retivov, V.M., Makarenkov, D.A. et al. Preliminary Discharge of Spent Lithium Batteries in Salt Solution for Safe Disposal. Coke Chem. 65, 564–571 (2022). https://doi.org/10.3103/S1068364X22700296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X22700296

Navigation