Log in

Structure and Texture of Industrial Coke Samples: A Comparison

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

Samples of baked low-temperature and needle coke are compared by X-ray phase analysis, X-ray structural analysis, analytical scanning electron microscopy, and adsorptional porosimetry. Their structural parameters (La and Lc) and textural characteristics (specific surface, pore structure) are determined, and their microstructure is investigated. Baked needle coke is characterized by anisotropic structure with La \( \gg \) Lc. In contrast, La and Lc are comparable for low-temperature coke. For baked needle coke, La and Lc are larger than for low-temperature coke. The difference in structural parameters of the coke samples corresponds to different morphology and textural characteristics of the coke particles. In the baked needle coke particles, packets of layers are separated by slot-like pores; in the unbaked particles, amorphous sponge-like microstructure is seen. The relation established between the structural parameters, morphology, and textural characteristics of the coke particles provides an additional tool for assessing coke quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Meier, M.W., Cracking behavior of anodes, PhD Thesis, Zurich: Fed. Inst. Technol., 1996.

  2. Akhmetov, M.M., Zaitseva, S.A., and Gimaev, R.N., Proizvodstvo i primenenie prokalennogo igol’chatogo koksa (Production and Application of Calcined Needle Coke), Moscow: Tsentr. Nauchno-Issled. Inst. Inf. Tekh. Ekon. Issled. Neftepererab. Neftekhim. Prom., 1983.

  3. Niu, P.X., Wang, Y.L., and Zhan, L., Electrochemical performance of needle coke and pitch coke used as anode material for Li-ion battery, J. Mater. Sci. Eng., 2011, vol. 29, pp. 204–209.

    CAS  Google Scholar 

  4. Hume, S.M., Influence of Raw Material Properties on the Reactivity of Carbon Anodes Used in the Electrolytic Production of Aluminum, Siene: R&D Carbon, 1993, 2nd ed.

  5. Sarkar, A., Effect of coke properties on anode properties, PhD Thesis, Chicoutimi, QG: Univ. of Québec, 2015.

  6. Fischer, W.K. and Perruchoud, R.C., Influence of coke calcining parameters on petroleum coke quality, Proc. AIME Annual Meeting “Light Metals,” Pennsylvania, 1985, pp. 811–826.

  7. Halim, H.P., Im, J.S., and Lee, C.W., Preparation of needle coke from petroleum by-products, Carbon Lett., 2013, vol. 14, p. 152.

    Article  Google Scholar 

  8. Predel, H., Petroleum coke, in Ullmann’s Encyclopedia of Industrial Chemistry, Bohnet, M., Ed., Weinheim: Wiley, 2012.

    Google Scholar 

  9. Cheng, Y., Zhang, Q., Fang, C., Ouyang, Y., and Liu, D., Co-carbonization behaviors of petroleum pitch/waste SBS: influence on morphology and structure of resultant cokes, J. Anal. Appl. Pyrol., 2018, vol. 129, pp. 154–164.

    Article  CAS  Google Scholar 

  10. Litvinov, E.V. and Tovstenko, A.F., Influence of structural parameters of coke on the performance properties of anode mass, Tr. Vses. Alyuminievo-Manievogo Inst., 1983, pp. 43–48.

    Google Scholar 

  11. Tano, T., Oyama, T., Oda, T., Fu**aga, I., and Hashisaka, H., EP Patent 2336267, 2011.

  12. Zhu, Y.-M., Zhao, X.-F., Gao, L.-J., et al., Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum, Spectrosc. Spectral Anal., 2017, vol. 37, no. 6, pp. 1919–1924. https://doi.org/10.3964/j.issn.1000-0593(2017)06-1919-06

    Article  CAS  Google Scholar 

  13. GOST (State Standard) 26132-84: Petroleum and Pitch Cokes. Microstructure Evaluation Method, Moscow: Izd. Standartov, 1985.

  14. Zelenkin, V.G. and Molotok, N.P., Grafitirovannye elektrody dlya elektrostaleplavil’nykh pechei vysokoi moshchnosti (Graphite Electrodes for High Power Electric Arc Furnaces), Moscow: Tsentr. Nauchno-Issled. Inst. Tsvetn. Metall., Ekon. Inf., 1982.

  15. Perruchoud, R., Fischer, W., Meier, M., and Mannweiler, U., Coke selection criteria for abrasion resistant graphitized cathodes, in Light Metals 2011, Cham: Springer-Verlag, 2011, pp. 1067–1072. https://doi.org/10.1007/978-3-319-48160-9_181

  16. Vitchus, B., Cannova, F., and Childs, H., Calcined coke from crude oil to customer silo, in Essential Readings in Light Metals, Vol. 4: Electrode Technology for Aluminum Production, Cham: Springer-Verlag, 2016, pp. 3–10. https://doi.org/10.1007/978-3-319-48200-2_1

  17. Song, S. and Cheng, X., The influence of alkyl group on needle coke formation, Adv. Mater. Res., 2011, vol. 335, pp. 1433–1438.

    Article  Google Scholar 

  18. Khokhlova, G.P., Barnakov, C.N., Popova, A.N., and Khitsova, L.M., Influence of carbon additives on the thermal transformation of coal pitch, Coke Chem., 2015, vol. 58, no. 7, pp. 268–274.

    Article  Google Scholar 

  19. Sozinov, S.A., Sotnikova, L.V., Popova, A.N., Kolmykov, R.P., and Russakov, D.M., Producing hexane-insoluble asphaltene films from coal pitch, Coke Chem., 2018, vol. 61, no. 2, pp. 72–77.

    Article  Google Scholar 

  20. Sadler, B.A. and Welch, B.J., Anode consumption mechanisms—a practical review of the theory and anode property consideration, Proc. 7th Australasian Aluminum Smelting Technology Conf. and Workshop, Sydney, NSW: Univ. of New South Wales, 20012001.

  21. Niu, P.X., Wang, Y.L., and Zhan, L., Electrochemical performance of needle coke and pitch coke used as anode material for Li-ion battery, J. Mater. Sci. Eng., 2011, vol. 29, pp. 204–209.

    CAS  Google Scholar 

  22. Zhang, B., Guo, H., Li, X., Wang, Z., and Peng, W., Mechanism for effects of structure and properties of carbon on its electrochemical characteristics as anode of lithium ion battery, J. Centr. South Univ., Sci. Technol., 2007, vol. 38, pp. 454–460.

    CAS  Google Scholar 

  23. Hulse, K.L., Anode Manufacture: Raw Materials, Formulation, and Processing Parameters, Siene: R&D Carbon, 2000.

  24. Varfolameev, D.F., Khairudinov, I.R., and Akhmetov, M.M., The nature of sulfur in petroleum coke, Khim. Tverd. Topl. (Moscow), 1984, no. 4, pp. 128–132.

  25. ICDD, PDF-2 2011 (Database), Kalakkodu, S., Ed., Newtown Square, PA, Int. Centre Diffraction Data, 2011.

    Google Scholar 

  26. Popova, A.N., Crystallographic analysis of graphite by X-ray diffraction, Coke Chem., 2017, vol. 60, no. 9, pp. 361–365.

    Article  Google Scholar 

  27. Shi, H., Reimers, J.N., and Dahn, J.R., Structure-refinement program for disordered carbon, J. Appl. Cryst., 1993, vol. 26, pp. 827–836.

    Article  CAS  Google Scholar 

  28. Inagaki, M. and Shiraishi, M., The evaluation of graphitization degree, Carbon Technol., 1951, vol. 5, pp. 165–175.

    Google Scholar 

  29. Wang, H.J. and Wang, H.F., The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers, New Carbon Mater., 2005, vol. 20, pp. 158–163.

    Google Scholar 

  30. Zhao, S.G., Wang, B.C., and Sun, Q., Effect of physical disturbance on the structure of needle coke, Phys. B (Amsterdam), 2010, vol. 19, no. 10, art. ID 108101.

  31. Popovici, I.C., Birghila, S., Voicu, G., et al., Morphological and microstructural characterization of some petroleum cokes as potential anode materials in lithium ion batteries, J. Optoelectron. Adv. Mater., 2010, vol. 12, no. 9, pp. 1903–1908.

    Google Scholar 

  32. Kim, I.J., Yang, S., Jeon, M.-J., et al., Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor, J. Power Sources, 2007, vol. 173, no. 1, pp. 621–625.

    Article  CAS  Google Scholar 

  33. Khokhlova, G.P., Malysheva, V.Yu., Barnakov, C.N., et al., Influence of the nature and amount of the catalyst on the phase structure of the carbon material obtained by low-temperature catalytic graphitization of coal pitch, Vestn. Kuzbass. Gos. Tekh. Univ., 2013, no. 5 (99), pp. 21–24.

  34. Sozinov, S.A., Sotnikova, L.V., Popova, A.N., and Hitsova, L.M., Thermal-decomposition products of hexane-insoluble asphaltenes from coal pitch, Coke Chem., 2018, vol. 61, no. 11, pp. 447–452.

    Article  Google Scholar 

  35. Karnaukhov, A.P., Adsorptsiya. Tekstura dispersnykh i poristykh materialov (Adsorption: Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.

Download references

ACKNOWLEDGMENTS

This research employed equipment at the Kemerovo regional collective-use center, based at the Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences.

Funding

Financial support was received within the framework of the state program for the Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences (project EGISU 121033100144-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Sozinov, A. N. Popova, Yu. N. Dudnikova or Z. R. Ismagilov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sozinov, S.A., Popova, A.N., Dudnikova, Y.N. et al. Structure and Texture of Industrial Coke Samples: A Comparison. Coke Chem. 64, 451–459 (2021). https://doi.org/10.3103/S1068364X21100069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X21100069

Keywords:

Navigation