Log in

The System of Diffusion Filling with Hydrogen Isotopes for a Batch of Spherical Shells up to Pressures of 1000 atm at 300 K

  • LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The current promising developments in controlled inertial fusion energy (IFE) are aimed at creating a power facility for mass fabrication of cryogenic fuel targets (CFT) and their high rep-rate delivery to the irradiation zone of a powerful laser. To ensure continuous operation of a IFE reactor, the thermonuclear burn region should be refilled with fuel at the rate of about 1 million targets per day. At the same time, handling an array of free-standing CFTs at each step of a closed operation cycle is a key requirement for the reactor technology design. The first step in the CFT fabrication is filling of hollow spherical shells with a fuel, which is deuterium or a deuterium–tritium mixture. The CFT shells are made of polymer, glass, beryllium, or high-density carbon. In world practice, it is customary to carry out the filling step either by diffusion of fuel gas through the CFT shell wall or by injecting liquid fuel through a thin capillary (several microns in diameter) built into the shell wall. The latter method is extremely problematic for future applications because it disrupts the integrity and symmetry of the shell and precludes rep-rate injection of the CFT into the laser focus. Based on data from many experimental runs, we present results on the optimization of a diffusion filling system first developed at the Lebedev Physical Institute (LPI) for filling a batch of free-standing polymer and glass shells (dia. 0.8 to 2.0 mm) with hydrogen isotopes to pressures of 1000 atm at 300 K. These results are unique and have no counterparts in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Koresheva, E.R. and Nikolaev, V.N., Energetika i Promyshlennost’ Rossii, 2013, vol. 21, p. 56.

    Google Scholar 

  2. Aleksandrova, I.V. and Koresheva, E.R., High Power Laser Sci. Eng., 2017, vol. 5, no. 2, p. e11.

  3. Aleksandrova, I.V., Koresheva, E.R., and Koshelev, E.L., Nucl. Fusion, 2021, vol. 61, p. 126009.

  4. Aleksandrova, I.V., Koresheva, E.R., and Koshelev, E.L., High Power Lasers Sci. Eng., 2022, vol. 10, p. e11.

  5. Aleksandrova, I.V., Akunets, A.A., Gavrilkin, S.Yu., Zvorykin, V.D., Ivanenko, O.M., Koresheva, E.R., Koshelev, E.L., Mitsen, K.V., Nikitenko, A.I., Timasheva, T.P., and Tsvetkov, A.Yu., Quantum Electron., 2023, vol. 53, no. 1, p. 34.

    Google Scholar 

  6. Wittman, M.D., Cryogenic fill-tube target facility for evaluating DT-filled national ignition facility and OMEGA-scale cryogenic target, in 37th Tritium Focus Group Meeting, Rochester, NY, October 25–27, 2016.

  7. Kilkenny, J.D., Alexander, N.B., Goodin, D.T., Nikroo, A., Steinman, D.A., Nobile, A., Cooley, J., Bernat, T., Cook, R., Letts, S., Takagi, M., Harding, D., Sethian, J., and Olson, C.L., Proc. 20th IAEA Fusion Energy Conf. (FEC 2004), Vilamoura, Portugal, 2004, p. 277.

  8. Gromov, A.I. and Merkuliev, Yu.A., in Laser Thermonuclear Targets and Superdurable Microballoon, Isakov, A.I., Ed., Hauppauge, NY: Nova Science, 1996, pp. 57–72.

    Google Scholar 

  9. Aleksandrova, I.V., Koresheva, E.R., Koshelev, E.L., Krokhin, O.N., Nikitenko, A.I., and Osipov, I.E., Phys. At. Nucl., 2017, vol. 80, no. 7, p. 1.

    Article  Google Scholar 

  10. Miles, R., Spaeth, M., Manes, K., et al., Fusion Sci. Technol., 2011, vol. 60, p. 61.

    Article  ADS  Google Scholar 

  11. Aleksandrova, I.V., Koresheva, E.R., and Koshelev, E.L., Bull. Lebedev Phys. Inst., 2017, vol. 44, no. 12, p. 357.

    Article  ADS  Google Scholar 

  12. Aleksandrova, I.V. and Koresheva, E.R., Phys. At. Nucl., 2022, vol. 85, p. S90.

    Article  ADS  Google Scholar 

  13. Aleksandrova, I., Belolipetskiy, A., Koresheva, E., Koshelev, E., Malinina, E., Mitina, L., Panina, L., Chtcherbakov, V., Tolley, M., Edwards, C., and Spindloe, C., in Proc. of International Conference on Fusion Science and Applications (IFSA), Bordeaux, France, 2011, p. 873.

  14. Aleksandrova, I.V., Belolipetskiy, A.A., Kalabuhov, V.A., Koresheva, E.R., Koshelev, E.L., Kutergin, A.I., Nikitenko, A.I., Osipov, I.E., Panina, L.V., Safronov, A.I., Timasheva, T.P., Timofeev, I.D., Usachev, G.S., Chtcherbakov, V.I., Tolley, M., Edwards, C.E., and Spindloe, C., Proc. SPIE, 2011, vol. 8080, 80802M.

  15. Aleksandrova, I.V., Koresheva, E.R., Timasheva, T.P., and Yaguzhinskii, L.S., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2019, vol. 42, no. 2, p. 67.

  16. Aleksandrova, I.V., Belolipetsky, A.A., Koresheva, E.R., et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2011, vol. 4, no. 4, p. 22.

  17. Perevezentsev, A.N., Andreev, B.M., and Kapyshev, V.K., et al., Fiz. Elem. Chast. At. Yadra, 1988, vol. 19, no. 6, p. 1386.

    Google Scholar 

  18. Handling of tritium-bearing wastes, IAEA Tech. Rept., 1981, vol. 203, p. 137.

  19. Roder, H.M., Childs, G.E., McCarthy, R.D., and Angerhofer, P.E., Survey of the properties of the hydrogen isotopes below their critical temperature, Technical Note, Colorado: NBS, 1965.

    Google Scholar 

  20. Borisenko, N.G., Bushuev, V.S., Gromov, A.I., Dorogottsev, V.M., Isakov, A.I., Koresheva, E.R., Merkulyev, Yu.A., Nikitenko, A.I., and Tolokonnikov, S.M., Sov. J. Quantum Electron., 1989, vol. 19, no. 9, p. 1221.

    Article  ADS  Google Scholar 

  21. Nakai, S. and Miley, J., Physics of High Power Laser and Matter Interactions, Singapore: Word Science, 1992.

    Google Scholar 

  22. Monsler, M.J., Merkul’ev, Yu.A., and Norimatsu, T., in Energy from Inertial Fusion, IAEA, Vienna, 1995, pp. 151–184.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are grateful to the team of designers from NPO Krasnaya Zvezda headed by G.D. Baranov for participation in the development of the laboratory filling system.

Funding

The work was under the state assignment of the Lebedev Physical Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Aleksandrova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, I.V., Koresheva, E.R., Osipov, I.E. et al. The System of Diffusion Filling with Hydrogen Isotopes for a Batch of Spherical Shells up to Pressures of 1000 atm at 300 K. Bull. Lebedev Phys. Inst. 51 (Suppl 1), S76–S92 (2024). https://doi.org/10.3103/S1068335624600128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335624600128

Keywords:

Navigation