Log in

Lasing Spectrum Narrowing in a Seven-Core Fiber Laser with an Array of Bragg Gratings Inscribed by Femtosecond Pulses

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The paper examines lasing regimes of a 7-core ytterbium fiber laser with a cavity based on an array of fiber Bragg gratings (FBGs) inscribed in each core by femtosecond pulses. Under pum** by a 50 W laser diode, the maximum output power is 33 W, and the differential lasing efficiency is ~70% in both the presence and absence of optical coupling between the cores of an active multicore fiber (MCF). At the same time, a significant difference in the generated optical and radio frequency spectra is observed when use is made of two types of MCFs. It is shown that in an active MCF without coupling, the lasing wavelength in each core is determined by a specific FBG, and the total spectrum is broadened to ~0.2 nm already at the threshold due to a relative shift of the spectral maxima of the FBG in different cores. However, in a fiber with coupling, despite the presence of a similar FBG shift, lasing occurs at a wavelength corresponding to a maximum of the geometric mean reflection coefficient of individual FBGs in the cores. In this case, the total optical spectrum is narrowed down to ~0.04 nm and broadens with power. In the radio frequency spectrum, narrow peaks of intermode beats are observed against the background of a noise substrate, the amplitude of which also increases with power. A model is given to explain the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Jauregui, C., Limpert, J., and Tünnermann, A., Nat. Photonics, 2013, vol. 7, pp. 861–867.

    Article  CAS  ADS  Google Scholar 

  2. Coherent Laser Beam Combining, Brignon, A.A., Ed., Wiley-VCH, 2013.

    Google Scholar 

  3. Andrianov, A.V., Kalinin, N.A., Anashkina, E.A., Egorova, O.N., Lipatov, D.S., Kim, A.V., Semjonov, S.L., and Litvak, A.G., J. Lightwave Technol., 2020, vol. 38, p. 2464.

    Article  CAS  ADS  Google Scholar 

  4. Balakin, A.A., Skobelev, S.A., Andrianov, A.V., Anashkina, E.A., and Litvak, A.G., Opt. Lett., 2021, vol. 46, p. 246.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Li, L., Schülzgen, A., Li, H., Temyanko, V.L., Moloney, J.V., and Peyghambarian, N., J. Opt. Soc. Am. B, 2007, vol. 24, p. 1721.

    Article  CAS  ADS  Google Scholar 

  6. Ji, J., Raghuraman, S., Huang, X., Zang, J., Ho, D., Zhou, Y., Benudiz, Y., Ben Ami, U., Ishaaya, A. A., and Yoo, S., Opt. Lett., 2018, vol. 43, p. 3369.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Kurkov, A.S., Paramonov, V.M., Dianov, E.M., Isaev, V.A., and Ivanov, G.A., Laser Phys. Lett., 2006, vol. 3, p. 441.

    Article  ADS  Google Scholar 

  8. Kurkov, A.S., Babin, S.A., Lobach, I.A., and Kablukov, S.I., Opt. Lett., 2008, vol. 33, p. 61.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ishida, I., Akamatsu, T., Wang, Z., Sasaki, Y., Takenaga, K., and Matsuo, S., in Opt. Fiber Commun. Conf. / Fiber Opt. Eng. Conf. Technical Digest 2013, Optical Society of America, 2013, p. OTu2G.1.

  10. Khopin, V.F., Umnikov, A.A., Gur’yanov, A.N., Bubnov, M.M., Senatorov, A.K., and Dianov, E.M., Inorg. Mater., 2005, vol. 41, p. 303.

    Article  CAS  Google Scholar 

  11. Wolf, A., Dostovalov, A., Bronnikov, K., Skvortsov, M., Wabnitz, S., and Babin, S., Opto-Electron. Adv., 2022, vol. 5, p. 210055.

  12. Kuznetsov, A., Wolf, A., Egorova, O., Semjonov, S., Dostovalov, A., Podivilov, E., and Babin, S., Spectrum collapse in a 7-core Yb-doped fiber laser with an array of fs-inscribed fiber Bragg gratings, Opt. Lett., 2023, vol. 48, pp. 3603–3606.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Kablukov, S.I., Zlobina, E.A., Podivilov, E.V., and Babin, S.A., Opt. Lett., 2012, vol. 37, p. 2508.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., and Podivilov, E.V., JOSA B, 2007, vol. 24, no. 8, pp. 1729–1738.

    Article  CAS  ADS  Google Scholar 

  15. Krämer, R.G., Matzdorf, C., Liem, A., Bock, V., Middents, W., Goebel, T.A., Heck, M., Richter, D., Schreiber, T., Tünnermann, A., and Nolte, S., Opt. Lett., 2019, vol. 44, pp. 723–726.

    Article  PubMed  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 21-72-30024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kuznetsov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A., Wolf, A., Egorova, O. et al. Lasing Spectrum Narrowing in a Seven-Core Fiber Laser with an Array of Bragg Gratings Inscribed by Femtosecond Pulses. Bull. Lebedev Phys. Inst. 50 (Suppl 13), S1449–S1457 (2023). https://doi.org/10.3103/S1068335623602352

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623602352

Keywords:

Navigation