Log in

High-Power Multimode Laser Diodes (λ = 976 nm) Based on Asymmetric Heterostructures with a Broadened Waveguide and Reduced Vertical Divergence

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The effect of the active region design on the vertical far-field divergence is studied for high-power laser diodes based on asymmetric heterostructures with a 4-μm thick waveguide and active region designs based on single (SQW) and double (DQW) InGaAs quantum wells. It is shown that the number of quantum wells has a significant effect on the divergence determined by the angle with the 95% power content (Θ95%). For asymmetric heterostructures with an SQW active region, the beam divergence at the half-maximum level (FWHM) is 12.9°. It is experimentally shown that the transition from the SQW to the DQW design of the active region leads to an increase in the Θ95% value from 23.2° to 41.8°. For both types of structures, the internal optical loss and internal quantum efficiency are 0.27 cm‒1 and 99%, respectively. On the basis of asymmetric heterostructures with an active SQW region, we demonstrate high-power laser diodes emitting a CW power of 9 W at a temperature and pump current of 25°C/10 A and 55°C/11.4 A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Slipchenko, S.O., Podoskin, A.A., Golovin, V.S., Pikhtin, N.A., and Kop’ev, P. S., IEEE Photonics Technol. Lett., 2021, vol. 33, no. 1, p. 7. https://doi.org/10.1109/LPT.2020.3040063

    Article  ADS  Google Scholar 

  2. Platz, R., Erbert, G., Pittroff, W., Malchus, M., Vogel, K., and Tränkle, G., High Power Laser Sci. Eng., 2013, vol. 1, no. 1, p. 60. https://doi.org/10.1017/hpl.2012.1

    Article  Google Scholar 

  3. Bai, J.G., et al., Proc. SPIE, 2011, vol. 7953, p. 79531F. https://doi.org/10.1117/12.875849

  4. Winterfeldt, M., Crump, P., Wenzel, H., Erbert, G., Tränkle, G., J. Appl. Phys., 2014, vol. 116, no. 6, p. 063103.https://doi.org/10.1063/1.4892567

  5. Hasler, K.H., et al., Semicond. Sci. Technol., 2014, vol. 29, no. 4, p. 045010. https://doi.org/10.1088/0268-1242/29/4/045010

  6. Slipchenko, S.O., et al., Semiconductors, 2013, vol. 47, no. 8, p. 1079.

    Article  ADS  Google Scholar 

  7. Slipchenko, S.O., et al., Tech. Phys. Lett., 2003, vol. 29, no. 12, pp. 980–983. https://doi.org/10.1134/1.1639448

  8. Crump, P., Pietrzak, A., Bugge, F., Wenzel, H., Erbert, G., and Tränkle, G., Appl. Phys. Lett., 2010, vol. 96, no. 13, p. 131110. https://doi.org/10.1063/1.3378809

  9. Pietrzak, A., Crump, P., Wenzel, H., Erbert, G., Bugge, F., and Tränkle, G., IEEE J. Sel. Top. Quantum Electron., 2011, vol. 17, no. 6, p. 1715. https://doi.org/10.1109/JSTQE.2011.2109939

    Article  ADS  Google Scholar 

  10. Maximov, M.V., Shernyakov, Y.M., Novikov, I.I., Shchukin, V.A., Shamid, I., and Ledentsov, N.N., Electron. Lett., 2003, vol. 39, no. 24, p. 1729. https://doi.org/10.1049/el:20031127

    Article  ADS  Google Scholar 

  11. Lijie Wang, et al., IEEE J. Sel. Top. Quantum Electron., 2015, vol. 21, no. 6, p. 343. https://doi.org/10.1109/JSTQE.2015.2420669

    Article  ADS  Google Scholar 

  12. Shashkin, I.S., Semiconductors, 2020, vol. 54, no. 4, p. 489. https://doi.org/10.1134/S1063782620040181

    Article  ADS  Google Scholar 

  13. Slipchenko, S.O., et al., Semiconductors, 2004, vol. 38, no. 12, pp. 1430–1439. https://doi.org/10.1134/1.1836066

  14. Slipchenko, S.O., Podoskin, A.A., Pikhtin, N.A., Leshko, A.Yu., Rozhkov, A.V., and Tarasov I.S., Tech. Phys. Lett., 2013, vol. 39, p. 364.

    Article  ADS  Google Scholar 

  15. Bogdankevich, O.V., Darznek, S.A., and Eliseev, P.G., Poluprovodnikovyye lazery (Semiconductor Lasers), Moscow: Nauka, 1976.

  16. Veselov, D.A., Bobretsova, Y.K., Klimov, A.A., Bakhvalov, K.V., Slipchenko, S.O., and Pikhtin, N.A., Semicond. Sci. Technol., 2021, vol. 36, no. 11, p. 115005. https://doi.org/10.1088/1361-6641/ac1f83

  17. Bert, N.A., Semiconductors, 2015, vol. 49, no. 10, p. 1383.

    Article  ADS  Google Scholar 

  18. Gavrina, P.S., et al., Quantum Electron., 2021, vol. 51, no. 2, p. 129.

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-30072). Regarding the development of post-growth technology for the manufacture of laser diodes, research was supported by the State Task of the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Slipchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Ulitkin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slipchenko, S., Podoskin, A., Nikolaev, D. et al. High-Power Multimode Laser Diodes (λ = 976 nm) Based on Asymmetric Heterostructures with a Broadened Waveguide and Reduced Vertical Divergence. Bull. Lebedev Phys. Inst. 50 (Suppl 9), S976–S983 (2023). https://doi.org/10.3103/S1068335623210091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623210091

Keywords:

Navigation