Log in

Optimization of Cavity Parameters of High-Power InGaAs/AlGaAs/GaAs Laser Diodes (λ = 1060 nm) for Efficient Operation at Ultrahigh Pulsed Pump Currents

  • LASERS
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Using the developed 2D numerical model of laser diodes, we study the effect of the cavity characteristics on the loss, and analyze the choice of the cavity parameters for efficient operation of the laser at ultrahigh pump currents. It is shown that at a fixed pump-current amplitude, a maximum output power is achieved for a combination of the optimal cavity parameters, namely, the cavity length Lopt and the output mirror reflectivity RARopt. It is found that the possibility of increasing the power by reducing the RAR coefficient is limited due to the formation of a local region of high optical loss and recombination loss currents near the cavity face with a high reflectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Golovin, V.S., Shashkin, I.S., Slipchenko, S.O., Pikhtin, N.A., and Kop’ev, P.S., Quantum Electron., 2020, vol. 50, p. 147.

    Article  ADS  Google Scholar 

  2. Slipchenko, S.O., Golovin, V.S., Soboleva, O.S., Lamkin, I.A., and Pikhtin, N.A., Quantum Electron., 2022, vol. 52, p. 343.

    Article  ADS  Google Scholar 

  3. Veselov, D.A., Bobretsova, Y.K., Leshko, A.Y., Shamakhov, V.V., Slipchenko, S.O., and Pikhtin, N.A., J. Appl. Phys., 2019, vol. 126, p. 213107.

  4. Avrutin, E.A. and Ryvkin, B.S., Semicond. Sci. Tech., 2016, vol. 32, p. 015004.

  5. Avrutin, E.A. and Ryvkin, B.S., J. Appl. Phys., 2019, vol. 125, p. 023108.

  6. Wang, X., Crump, P., Wenzel, H., Liero, A., Hoffmann, T., Pietrzak, A., Schultz, Ch.M., Klehr, A., Ginolas, A., Einfeldt, S., Bugge, F., Erbert, G., and Trånkle, G., IEEE J. Quantum Electron., 2010, vol. 46, p. 658.

    Article  ADS  Google Scholar 

  7. Wenzel, H., Crump, P., Pietrzak, A., Wang, X., Erbert, G., and Trånkle, G., New J. Phys., 2010, vol. 12, p. 085007.

  8. Piprek, J., Opt. Quanum Electron., 2019, vol. 51, p. 1.

    Article  Google Scholar 

  9. Dogan, M., Michael, C.P., Zheng, Y., Zhu, L., and Jacob, J.H., Proc. High-Power Diode Laser Technology and Applications XII, SPIE, 2014, vol. 8965, p. 89650P.

  10. Chen, Z., Bao, L., Bai, J., Grimshaw, M., Martinsen, R., DeVito, M., Haden, J., and Leisher, P., Proc. Novel In-Plane Semiconductor Lasers XI, SPIE, 2012, vol. 8277, p. 245.

    Google Scholar 

  11. Hao, T., Song, J., and Leisher, P.O., Proc. Semiconductor Lasers and Laser Dynamics VI, SPIE, 2014, vol. 9134, p. 155.

    Google Scholar 

  12. Arslan, S., Swertfeger, R.B., Fricke, J., Ginolas, A., Stölmacker, C., Wenzel, H., Crump, P.A., Patra, S.K., Deri, R.J., Boisselle, M.C., and Pope, D.L., Appl. Phys. Lett., 2020, vol. 117, p. 203506.

  13. Soboleva, O.S., Zolotarev, V.V., Golovin, V.S., Slipchenko, S.O., and Pikhtin, N.A., IEEE T. Electron Dev., 2020, vol. 67, p. 4977.

    Article  ADS  Google Scholar 

  14. Arslan, S., Wenzel, H., Fricke, J., Thies, A., Ginolas, A., Stölmacker, C., Maaßdorf, A., Eppich, B., Swertfeger, R.B., Patra, S.K., Deri, R.J., Boiselle, M.C., Pope, D.L., Leisher, P.O., Trånkle, G., and Crump, P., Proc. Novel In-Plane Semiconductor Lasers XXI, SPIE, 2022, vol. 12021, p. 93.

    Google Scholar 

  15. Coldren, L.A., Corzine, S.W., and Mashanovitch, M.L., Diode Lasers and Photonic Integrated Circuits, Hoboken, NJ: John Wiley and Sons, 2012, p. 218.

    Book  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-79-30072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Slipchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Uliktin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slipchenko, S.O., Soboleva, O.S., Golovin, V.S. et al. Optimization of Cavity Parameters of High-Power InGaAs/AlGaAs/GaAs Laser Diodes (λ = 1060 nm) for Efficient Operation at Ultrahigh Pulsed Pump Currents. Bull. Lebedev Phys. Inst. 50 (Suppl 5), S535–S546 (2023). https://doi.org/10.3103/S1068335623170153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623170153

Keywords:

Navigation