Log in

Three-Dimensional Paul Trap with High Secular Frequency for Compact Optical Clock

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The Paul ion trap is developed for the use in a compact frequency standard based on a single ytterbium ion. The design features are the use of atomic ovens for compensating for parasitic electric fields and good optical accessibility. The results on trap** and laser cooling of a single 171Yb+ ion are presented. A secular frequency of up to 1.2 MHz has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Huntemann, C. Sanner, B. Lipphardt, et al., Phys. Rev. Lett. 116, 1 (2016).

    Article  Google Scholar 

  2. T. Bothwell, D. Kedar, E. Oelker, et al., ar**v:1906.06004 (2019).

    Google Scholar 

  3. T. P. Heavner, E. A. Donley, F. Levi, et al., Metrologia 51, 174 (2014).

    Article  ADS  Google Scholar 

  4. R. M. Godun, P. B. R. Nisbet-Jones, J.M. Jones, et al., Phys. Rev. Lett. 113, 1 (2014).

    Article  Google Scholar 

  5. P. Wcislo, P. Morzýnski, M. Bober, et al., Nat. Astron. 1, 0009 (2017).

    Article  Google Scholar 

  6. J. Cao, P. Zhang, J. Shang, et al., Appl. Phys. B 123, 112 (2017).

    Article  ADS  Google Scholar 

  7. S. B. Koller, J. Grotti, S. Vogt, et al., Phys. Rev. Lett. 118, 1 (2017).

    Article  Google Scholar 

  8. J. Grotti, S. Koller, S. Vogt, et al., Nat. Phys. 14, 437 (2018).

    Article  Google Scholar 

  9. F. Riehle, Nat. Photonics 11, 25 (2017).

    Article  ADS  Google Scholar 

  10. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

    Article  ADS  Google Scholar 

  11. C. A. Schrama, E. Peik, W.W. Smith, and H. Walther, Opt. Commun. 101, 32 (1993).

    Article  ADS  Google Scholar 

  12. Q. A. Turchette, Kielpinski, B. E. King, et al., Phys. Rev. A 61, 063418 (2000).

    Article  ADS  Google Scholar 

  13. D. J. Berkeland, J. D. Miller, J. C. Bergquist, et al., J. Appl. Phys. 83, 5025 (1998).

    Article  ADS  Google Scholar 

  14. L. Deslauriers, S. Olmschenk, D. Stick, et al., Phys. Rev. Lett. 97, 103007 (2006).

    Article  ADS  Google Scholar 

  15. I. A. Boldin, A. Kraft, and C. Wunderlich, Phys. Rev. Lett. 120, 23201 (2018).

    Article  ADS  Google Scholar 

  16. J. D. Siverns, L. R. Simkins, S. Weidt, and W. K. Hensinger, Appl. Phys. B: Lasers Opt. 107, 921 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 14.610.21.0010, project unique identifier RFMEFI61017X0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Semerikov.

Additional information

Russian Text © The Author(s), 2019, published in Kratkie Soobshcheniya po Fizike, 2019, Vol. 46, No. 9, pp. 43–49.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semerikov, I.A., Zalivako, I.V., Borisenko, A.S. et al. Three-Dimensional Paul Trap with High Secular Frequency for Compact Optical Clock. Bull. Lebedev Phys. Inst. 46, 297–300 (2019). https://doi.org/10.3103/S1068335619090070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335619090070

Keywords

Navigation