Log in

Study of the Structure and Properties of Cermets Based on the NiAl–Al2O3 System

  • REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The powder metallurgy method, including the mechanical activation of powders in a planetary mill and spark plasma sintering at 1470°C in an inert atmosphere, is used to obtain NiAl–45 vol % Al2O3 cermet samples with the addition of nanoparticles of magnesium aluminum spinel in an amount of 0.05 vol %. The features of their microstructure are investigated. Spinel nanoparticles are located at the boundaries between the grains of the composite components. The results of X-ray diffraction analysis at t = 25 and 800°C are obtained. The main components of the material at t = 20°C are α-Al2O3 and NiAl. The dependence of internal friction on the temperature in the range of 20–900°C is studied, and the influence of magnesium aluminum spinel nanoparticles on the nature of its change is established. The internal friction curve shows that vibration dam** occurs up to 600°C. Dependences of the bending strength of cermets at t = 20–750°C are determined. The positive effect of the introduction of a small amount of magnesium aluminum spinel on the elastic properties of composites is established. The best mechanical properties are demonstrated for NiAl–42 vol % Al2O3–0.05 vol % MgAl2O4 samples. On average, the ultimate bending strength of this material is 8–15% higher compared to samples without nanoparticles. The materials obtained in this research had a bending strength under normal conditions of 460–490 MPa. A summarizing analysis of NiAl–Al2O3 cermet research is carried out to determine the nature of the dependence of the bending strength on the ratio of components. It is found that it has an extreme nature: the maximum is observed when using the ratio of aluminum oxide to aluminum nickel equal to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kamei, T., Recent research of thorium molten-salt reactor from a sustainability viewpoint, Sustainability, 2012, vol. 4, pp. 2399–2418. https://doi.org/10.3390/su4102399

    Article  CAS  Google Scholar 

  2. Abou-Jaoude, A., Palmer, J., Sterbentz, J., and Calderoni, P., Evaluation of a Versatile Experimental Salt Irradiation Loop (VESIL) Inside the Advanced Test Reactor, Report NL/EXT-19-52917-2019, Idaho National Laboratory, 2019. https://doi.org/10.2172/1511048

  3. Agureev, L.E., Kostikov, V.I., Eremeeva, Zh.V., Barmin, A.A., Rizakhanov, R.N., Ivanov, B.S., Ashmarin, A.A., Laptev, I.I., and Rudshtein, R.I., Powder aluminum composites of Al–Cu system with micro-additions of oxide nanoparticles, Inorg. Mater. Appl. Res., 2016, vol. 7, no. 6, pp. 507–510. https://doi.org/10.1134/s2075113316050026

    Article  Google Scholar 

  4. Lurie, S., Volkov-Bogorodskiy, D., Solyaev, Yu., Rizahanov, R., and Agureev, L., Multiscale modeling of aluminium-based metal-matrix composites with oxide nanoinclusions, Comput. Mater. Sci., 2016, vol. 116, pp. 62–73. https://doi.org/10.1016/j.commatsci.2015.12.034

    Article  CAS  Google Scholar 

  5. Yang, C., Muransky, O., Zhu, H., Thorogood, G.J., Avdeev, M., Huang, H., and Zhou, X., The effect of milling time on the microstructural characteristics and strengthening mechanisms NiMo-SiC alloys prepared via powder metallurgy, Mater. Des., 2017, vol. 113, pp. 223–231. https://doi.org/10.3390/ma10040389

    Article  CAS  Google Scholar 

  6. Joo, H., Han, Ch., Kim, B., Kim, D., and Choi, H., Interface activated sintering of tungsten by nano-particles in the spark plasma sintering, J. Adv. Mater. Sci., 2011, vol. 28, pp. 200–206.

    Google Scholar 

  7. Chuvildeev, V.N., Nerevnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya (Non-Equilibrium Grain Boundaries in Metals. Theory and Applications), Moscow: Fizmatlit, 2004.

  8. Weeks, R.A. and Sonder, E., Electrical conductivity of pure and Fe-doped magnesium-aluminum spinel, J. Am. Ceram. Soc., 1980, vol. 63, nos. 1–2, pp. 92–95. https://doi.org/10.1111/j.1151-2916.1980.tb10656.x

    Article  CAS  Google Scholar 

  9. Peters, D.W., Feinstein, L., and Peltzer, C., On the high-temperature electrical conductivity of alumina, J. Chem. Phys., 1965, vol. 42, no. 7, pp. 2345–2346. https://doi.org/10.1063/1.1696298

    Article  CAS  Google Scholar 

  10. Munir, Z.A., Tamburini, U.A., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  11. Shen, Z., Johnsson, M., Zhao, Z., and Nygren, M., Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening, Nature, 2002, vol. 417, pp. 266–269. https://doi.org/10.1038/417266a

    Article  CAS  Google Scholar 

  12. Olevsky, E. and Froyen, L., Constitutive modeling of spark-plasma sintering of conductive materials, Scr. Mater., 2006, vol. 55, pp. 1175–1178. https://doi.org/10.1016/j.scriptamat.2006.07.009

    Article  CAS  Google Scholar 

  13. Li, C., Habler, G., Griffiths, T., Rečnik, A., Jeřábek, P., Götze, L.C., Mangler, C., Pennycook, T.J., Meyer, J., and Abart, R., Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions, Acta Crystallogr., Sect. A: Found. Adv., 2018, vol. 74, pp. 466–480. https://doi.org/10.1107/S205327331800757X

    Article  CAS  Google Scholar 

  14. Hwang, C.-S., Liu, T.-J., Shich, J.-P., Tuan, W.-H., and Guo, J.-K., Metal oxidation process: NiAl/Al2O3 composites, in Multiphased Ceramic Materials—Processing and Potential, Tuan, W.-H. and Guo, J.-K., Eds., Berlin, Heidelberg: Springer, 2004, pp. 87–97.

    Google Scholar 

  15. Kalinski, D., Chmielewski, M., Pietrzak, K., and Choregiewicz, K., An influence of mechanical mixing and hot-pressing on properties of NiAl/Al2O3 composite, Arch. Metall. Mater., 2012, vol. 57, no. 3, pp. 695–702. https://doi.org/10.2478/v10172-012-0075-7

    Article  CAS  Google Scholar 

  16. Chang, S.T., Tuan, W.H., You, H.C., and Lin, I.C., Effect of surface grinding on the strength of NiAl and Al2O3/NiAl composites, Mater. Chem. Phys., 1999, vol. 59, pp. 220–224. https://doi.org/10.1016/S0254-0584(99)00060-7

    Article  CAS  Google Scholar 

  17. Chmielewski, M., Nosewicz, S., Pietrzak, K., Rojek, J., Strojny-Nędza, A., Mackiewicz, S., and Dutkiewicz, J., Sintering behavior and mechanical properties of NiAl, Al2O3, and NiAl–Al2O3 composites, J. Mater. Eng. Perform., 2014, vol. 23, pp. 3875–3886. https://doi.org/10.1007/s11665-014-1189-z

    Article  CAS  Google Scholar 

  18. Agureev, L.E., Kostikov, V.I., Laptev, I.N., Kanushkin, A.I., Eremeeva, Zh.V., Ivanov, A.V., Ashmarin, A.A., Vysotina, E.A., and Ivanov, B.S., Preparation and study of Ni–Al–O system cermet composites with a small addition of MgAl2O4 nanoparticles, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 3, pp. 375–381. https://doi.org/10.3103/S1067821220030025

    Article  Google Scholar 

  19. Kaliński, D., Chmielewski, M., and Pietrzak, K., Mechanical, thermal and tribological properties of hot-pressed NiAl/Al2O3 composites, Proc. 15th European Conference on Composite Materials, Venice, 2012. http://www.escm.eu.org/eccm15/data/assets/580.pdf.

  20. Davies, I.J., Pezzotti, G., Bellosi, A., Sciti, D., and Guicciardi, S., Mechanical behavior of nickel aluminide reinforced alumina (Al2O3–NiAl) composites, Adv. Compos. Lett., 2002, vol. 11, no. 6, pp. 265–273. https://doi.org/10.1177/096369350201100601

    Article  Google Scholar 

  21. Upadhyay, A., Beniwal, R.S., and Singh, R., Elastic properties of Al2O3–NiAl: A modified version of Hashin-Shtrikman bounds, Continuum Mech. Thermodyn., 2012, vol. 24, pp. 257–266. https://doi.org/10.1007/s00161-012-0237-x

    Article  CAS  Google Scholar 

  22. Hsieh, C.L., Tuan, W.H., and Wu, T.T., Elastic behavior of a model two phase material, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 3789–3793. https://doi.org/10.1016/j.jeurceramsoc.2004.02.002

    Article  CAS  Google Scholar 

  23. Qi, G., Shangguan, F., Yang, L., Bai, Q., and Wu, G., Microstructure and mechanical properties of Al2O3/NiAl in situ composites by hot-press-aided reaction synthesis, Adv. Mater. Res., 2012, vols. 581–582, pp. 548–551. https://doi.org/10.4028/www.scientific.net/AMR.581-582.548

  24. Lenel, F.V. and Ansell, G.S., A Theory of Dispersion Strengthening, Springfield, VA: National Technical Information Service, U.S. Department of Commerce, 1960. https://ntrs.nasa.gov/citations/19620002956.

    Google Scholar 

  25. Nosewicz, S., Rojek, J., Mackiewicz, S., Chmielewski, M., Pietrzak, K., and Romelczyk, B., The influence of hot pressing conditions on mechanical properties of nickel aluminide/alumina composite, J. Compos. Mater., 2014, vol. 48, pp. 3577–3589. https://doi.org/10.1177/0021998313511652

    Article  CAS  Google Scholar 

  26. Weller, M., Hirscher, M., Schweizer, E., and Kronrniiller, H., High temperature internal friction in NiAl single crystals, J. Phys. IV, 1996, vol. 6, pp. 231–234. https://doi.org/10.1051/jp4:1996849

    Article  CAS  Google Scholar 

  27. Hirscher, M., Hirscher, E., Schweizer, M., Weller, H., and Kronmüller, H., Internal friction in NiAl single crystals, Philos. Mag. Lett., 1996, vol. 74, no. 3, pp. 189–194.

    Article  CAS  Google Scholar 

  28. Hirscher, M. and Schaible, D., Internal friction in plastically deformed high-purity NiAl single crystals, MRS Proc., 1998, vol. 552, pp. KK8.2.2–KK8.2.6. https://doi.org/10.1557/PROC-552-KK8.2.1

  29. Hirth, J.P. and Lothe, J., Theory of Dislocations, New York: Wiley, 1982.

    Google Scholar 

  30. Dezerald, L., Proville, L., Ventelon, L., Willaime, F., and Rodne, D., First-principles prediction of kink-pair activation enthalpy on screw dislocations in bcc transition metals: V, Nb, Ta, Mo, W, and Fe, Phys. Rev. B, 2015, vol. 91, pp. 94–105. https://doi.org/10.1103/PhysRevB.91.094105

    Article  CAS  Google Scholar 

  31. Proville, L., Ventelon, L., and Rodney, D., Prediction of the kink-pair formation enthalpy on screw dislocations in α-iron by a line tension model parametrized on empirical potentials and first-principles calculations, Phys. Rev. B, 2013, vol. 87, p. 144106.

    Article  Google Scholar 

  32. Shved, O.V., Mudry, S.I., and Kulyk, Yu.O., High-temperature X-ray diffraction studies of Al–Ni–Hf ternary alloys, Phys. Chem. Solid State, 2017, vol. 18, no. 3, pp. 324–327. https://doi.org/10.15330/pcss.18.3.324-327

    Article  Google Scholar 

  33. Blanter, M.S., Golovin, I.S., Neuhäuser, H., and Sinning, H.-R., Internal Friction in Metallic Materials, Berlin: Springer, 2007. https://doi.org/10.1007/978-3-540-68758-0

    Book  Google Scholar 

  34. Wu, J., Han, F.S., Wang, Q.Z., Hao, G.L., and Gao, Z.Y., The internal friction peaks correlated to the relaxation of atomic defects in Fe47Al53 alloy, Intermetallics, 2007, vol. 15, pp. 838–844. https://doi.org/10.1016/j.intermet.2006.10.037

    Article  CAS  Google Scholar 

  35. Nguyen, K.N. and Dang, K.C., Synthesis, characterization and catalytic activity of CoAl2O4 and NiAl2O4 spinel-type oxides for NOx selective reduction, Adv. Technol. Mater. Mater. Process. J., 2004, vol. 6, no. 2, pp. 336–343. https://doi.org/10.2240/azojomo0129

    Article  Google Scholar 

  36. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh smesei (Thermophysical Properties of Components of Combustible Systems), Moscow: NPO Inform TEI, 1992.

  37. Kalita, P., Ghosh, S., Singh, U.B., Kulriya, P.K., Grover, V., Shukla, R., Tyagi, A.K., Sattonnay, G., and Avasthi, D.K., Enhanced Radiation Tolerance of YSZ at High Temperature Against Swift Heavy Ions: Key Role of Interplay Between Material Microstructure and Irradiation Temperature. https://arxiv.org/abs/1806.10024.

  38. Wen, J., Sun, C., Dholabhai, P., **a, Y., Tang, M., Chen, D., Yang, D., Li, Y., Uberuaga, B.P., and Wang, Y., Temperature dependence of the radiation tolerance of nanocrystalline pyrochlores A2Ti2O7 (A = Gd, Ho and Lu), Acta Mater., 2016, vol. 110, pp. 175–184. https://doi.org/10.1016/j.actamat.2016.03.025

    Article  CAS  Google Scholar 

  39. El-Atwani, O., Esquivel, E., Efe, M., Aydogan, E., Wang, Y., Martinez, E., and Maloy, S., Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size, Acta Mater., 2018, vol. 149, pp. 206–219. https://doi.org/10.1016/j.actamat.2018.02.035

    Article  CAS  Google Scholar 

  40. Jagielskia, J., Piatkowskaa, A., Aubert, P., Labdi, S., Maciejak, O., Romaniec, M., Thomé, L., Jozwik, I., Debelle, A., Wajler, A., and Boniecki, M., Effect of grain size on mechanical properties of irradiated mono- and polycrystalline MgAl2O4, Acta Phys. Pol., A, 2011, vol. 120, no. 1, pp. 118–121. https://doi.org/10.12693/APHYSPOLA.120.118

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was funded by the Russian Foundation for Basic Research (project no. 19-03-00350 А, “Develo** Methods to Improve Strength and Functional Properties of Nickel-Based Cermet Materials”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. E. Agureev, Zh. V. Eremeeva, B. S. Ivanov, S. V. Savushkina, I. N. Laptev, A. A. Ashmarin or G. V. Sivtsova.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agureev, L.E., Kostikov, V.I., Eremeeva, Z.V. et al. Study of the Structure and Properties of Cermets Based on the NiAl–Al2O3 System. Russ. J. Non-ferrous Metals 62, 763–770 (2021). https://doi.org/10.3103/S106782122106002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782122106002X

Navigation