Log in

Structure, Properties, and Oxidation Resistance of Prospective HfB2–SiC Based Ceramics

  • REFRACTORY, CERAMIC, AND COMPOSITE MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This work is devoted to the fabrication of heterophase powdered and sintered ceramics based on the hafnium diboride and silicon carbide by means of self-propagating high-temperature synthesis (SHS) and hot pressing (HP). The structure of SHS-powders consists of hafnium diboride grains and agglomerated polyhedral 2–6 μm silicon carbide grains. The produced composite powders are characterized by an average size of ~10 μm and maximum size of 30 μm. The phase composition of the synthesized powders and sintered ceramics are identical. The sintered ceramic is characterized by a high degree of structural and chemical uniformity, a residual porosity of 3.8%, a hardness of 19.8 ± 0.4 GPa, strength of 597 ± 59 MPa, and fracture toughness of 8.8 ± 0.4 MPa m1/2. Plasma torch tests (PTTs) are carried out to determine oxidation resistance under the influence of high-enthalpy gas flow. The phase composition and microstructure of the surface of the sample after testing are investigated. HP ceramics demonstrated outstanding resistance towards oxidation in a high-enthalpy plasma torch at 2150°С and heat flow of 5.6 MW/m2 for 300 s. During plasma torch testing, a dense protective oxide layer 30–40 μm thick is formed on the surface of HfB2–SiC ceramic. The layer consists of an HfO2 hull filled with amorphous borosilicate glass SiO2–B2O3. From the composite HfB2–SiC SHS powder, by hot pressing, experimental samples of model bushings of the combustion chamber of a low thrust liquid rocket engine are designed to conduct PTTs in realistic operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Gunyaev, G.M. and Gofin, M.Ya., Carbon-carbon composite materials, Aviats. Mater. Tekhnol., 2013, no. S1, pp. 62–90.

  2. Jastin, J.F. and Jankowiak, A., Ultra high temperature ceramics: densification, properties and thermal stability, Aerospacelab J., 2011, no. 3, pp. 1–11.

  3. Mallik, M., Kailath, A.J., Ray, K.K., and Mitra, R., Electrical and thermophysical properties of ZrB2 and HfB2 based composites, J. Eur. Ceram. Soc., 2012, vol. 32, no. 10, pp. 2545–2555.

    Article  CAS  Google Scholar 

  4. Ultra-High Temperature Ceramics. Materials for Extreme Environment Applications, Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., and Zhou, Y., Eds., Hoboken, NJ: John Wiley and Sons, 2014.

    Google Scholar 

  5. Squire, T.H. and Marschall, J., Material property requirements for analysis and design of UHTC components in hypersonic applications, J. Eur. Ceram. Soc., 2010, vol. 30, no. 11, pp. 2239–2251.

    Article  CAS  Google Scholar 

  6. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Kerans, R.J., A model for the oxidation of of ZrB2, HfB2 and TiB2, Acta Mater., 2007, vol. 55, no. 17, pp. 5999–6010.

    Article  CAS  Google Scholar 

  7. Monteverde, F., Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 2007, vol. 428, nos. 1–2, pp. 197–205

    Article  CAS  Google Scholar 

  8. Sokolov, P.S., Arakcheev, A.V., Mikhal’chik, I.L., Plyasunkova, L.A., Georgiu, I.F., Frolova, T.S., Mironov, R.A., Lanin, A.V., Zabezhailov, A.O., Kelina, I.Yu., and Rusin, M.Yu., Ultra-high-temperature ceramics based on HfB2-30% SiC: Production and basic properties, Refract. Ind. Ceram., 2017, vol. 58, no. 3, pp. 304–311.

    Article  CAS  Google Scholar 

  9. Marschall, J., Erlich, D.C., Manning, H., Duppler, W., Ellerby, D., and Gasch, M., Microhardness and high-velocity impact resistance of HfB2/SiC and ZrB2/SiC composites, J. Mater. Sci., 2004, vol. 39, pp. 5959–5968.

    Article  CAS  Google Scholar 

  10. Liu, J.-X., Zhang, G.-J., Xu, F.-F., Wu, W.-W., Liu, H.-T., Sakka, Y., Nishimura, T., Suzuki, T.S., Ni, D.-W., and Zou, Ji., Densification, microstructure evolution and mechanical properties of WC doped HfB2-SiC ceramics, J. Eur. Ceram. Soc., 2015, vol. 35, no. 10, pp. 2707–2714.

    Article  CAS  Google Scholar 

  11. Zhang, G.-J., Guo, W.-M., Ni, D.-W., and Kan, Y.-M., Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties, J. Phys.: Conf. Ser., 2009, vol. 176, no. 1, article no. 012041.

    Google Scholar 

  12. Monteverde, F., Melandri, C., and Guicciardi, S., Microstructure and mechanical properties of an HfB2 + 30 vol % SiC composite consolidated by spark plasma sintering, Mater. Chem. Phys., 2006, vol. 100, nos. 2–3, pp. 513–519.

    Article  CAS  Google Scholar 

  13. Zapata-Solvas, E., Jayaseelan, D.D., Lin, H.T., Brown, P., and Lee, W.E., Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc., 2013, vol. 33, no. 7, pp. 1373–1386.

    Article  CAS  Google Scholar 

  14. Monteverde, F. and Scatteia, L., Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application, J. Am. Ceram. Soc., 2007, vol. 90, no. 4, pp. 1130–1138.

    Article  CAS  Google Scholar 

  15. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., Simonenko, N.P., Kolesnikov, A.F., Papynov, E.K., Shichalin, O.O., Avramenko, V.A., and Kuznetsov, N.T., HfB2-SiC (10–20 vol%) ceramic materials: Manufacture and behavior under long-term exposure to dissociated air streams, Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, pp. 1361–1382.

    Article  CAS  Google Scholar 

  16. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., Simonenko, N.P., Kolesnikov, A.F., Papynov, E.K., Shichalin, O.O., Avramenko, V.A., and Kuznetsov, N.T., HfB2–SiC (45 vol %) ceramic material: Manufacture and behavior under long-term exposure to dissociated air jet flow, Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1298–1311.

    Article  CAS  Google Scholar 

  17. Sevastyanov, V.G., Simonenko, E.P., Gordeev, A.N., Simonenko, N.P., Kolesnikov, A.F., Papynov, E.K., Shichalin, O.O., Avramenko, V.A., and Kuznetsov, N.T., Behavior of a sample of the ceramic material HfB2–SiC (45 vol %) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface, Russ. J. Inorg. Chem., 2016, vol. 60, no. 11, pp. 1360–1373.

    Article  Google Scholar 

  18. Lee, S.J., Kang, E.S., Baek, S.S., and Kim, D.K., Reactive hot pressing and oxidation behavior of Hf-based ultra-high-temperature ceramics, Surf. Rev. Lett., 2010, vol. 17, no. 2, pp. 215–221.

    Article  CAS  Google Scholar 

  19. Leslie, C.J., Boakye, E.E., Keller, K.A., and Cinibulk, M.K., Development of continuous SiC fiber reinforced HfB2–SiC composites for aerospace applications, in Processing and Properties of Advanced Ceramics and Composites, Bansal, N.P., Singh, J.P., Ko, S.W., Eds., Hoboken, NJ: John Wiley and Sons, 2013, vol. 240, pp. 3–12.

    Google Scholar 

  20. Musa, C., Licheri, R., Orrù, R., Marocco, R., and Cao, G., Fabrication and characterization of SiC fiber reinforced HfB2 ceramics for space propulsion components, Ceram. Mod. Technol., 2019, vol. 1, no. 1, pp. 51–58.

    Article  Google Scholar 

  21. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, pp. 203–239.

    Article  CAS  Google Scholar 

  22. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Timofeev, A.N., Self-propagating high-temperature synthesis of refractory boride ceramics (Zr,Ta)B2 with superior properties, J. Eur. Ceram. Soc., 2018, vol. 38, no. 4, pp. 1118–1127.

    Article  CAS  Google Scholar 

  23. Kurbatkina, V.V., Patsera, E.I., and Levashov, E.A., Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Part 1: The mechanisms of combustion and structure formation, Ceram. Int., 2019, vol. 45, no. 3, pp. 4067–4075.

    Article  CAS  Google Scholar 

  24. Kurbatkina, V.V., Patsera, E.I., Smirnov, D.V., Levashov, E.A., Vorotilo, S., and Timofeev, A.N., Part 2: Structure, mechanical and thermophysical properties of consolidated ceramics based on (Hf,Ta)B2, Ceram. Int., 2019, vol. 45, no. 3, pp. 4076–4083.

    Article  CAS  Google Scholar 

  25. Iatsyuk, I.V., Pogozhev, Yu.S., Levashov, E.A., Novikov, A.V., Kochetov, N.A., and Kovalev, D.Yu., Combustion synthesis of high-temperature ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2018, vol. 38, no. 7, pp. 2792–2801.

    Article  CAS  Google Scholar 

  26. Licheri, R., Orrù, R., Musa, C., and Cao, G., Combination of SHS and SPS techniques for fabrication of fully dense ZrB2–ZrC–SiC composites, Mater. Lett., 2008, vol. 62, no. 3, pp. 432–435.

    Article  CAS  Google Scholar 

  27. Licheri, R., Orrù, R., Musa, C., Locci, A.M., and Cao, G., Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis, J. Mater. Sci., 2008, vol. 43, no. 19, pp. 6406–6413.

    Article  CAS  Google Scholar 

  28. Licheri, R., Orrù, R., Musa, C., Locci, A.M., and Cao, G., Spark plasma sintering of ZrB2- and HfB2-based ultra-high temperature ceramics prepared by SHS, Int. J. Self-Propag. High-Temp. Synth., 2009, vol. 18, no. 1, pp. 15–24.

    Article  CAS  Google Scholar 

  29. Licheri, R., Orrù, R., Musa, C., Locci, A.M., and Cao, G., Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis, J. Alloys Compd., 2009, vol. 478, nos. 1–2, pp. 572–578.

    Article  CAS  Google Scholar 

  30. Potanin, A.Yu., Vorotilo, S., Pogozhev, Yu.S., Rupasov, S.I., Lobova, T.A., and Levashov, E.A., Influence of mechanical activation of reactive mixtures on the microstructure and properties of SHS-ceramics MoSi2–HfB2–MoB, Ceram. Int., 2019, vol. 45, no. 16, pp. 20354–20361.

    Article  CAS  Google Scholar 

  31. Mishra, S.K., Das, S., and Pathak, L.C., Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis, Mater. Sci. Eng., A, 2004, vol. 364, nos. 1–2, pp. 249–255.

    Article  Google Scholar 

  32. Khanra, A.K., Godkhindi, M.M., and Pathak, L.C., Comparative studies on sintering behavior of self-propagating high-temperature synthesized ultra-fine titanium diboride powder, J. Am. Ceram. Soc., 2005, vol. 88, pp. 1619–1621.

    Article  CAS  Google Scholar 

  33. Licheri, R., Orrù, R., Musa, C., and Cao, G., Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites, Mater. Lett., 2008, vol. 62, pp. 432–435.

    Article  CAS  Google Scholar 

  34. Iatsyuk, I.V., Potanin, A.Yu., Rupasov, S.I., and Levashov, E.A., Kinetics and high-temperature oxidation mechanism of ceramic materials in the ZrB2–SiC–MoSi2 system, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 1, pp. 76–81.

    Article  Google Scholar 

  35. Yatsyuk, I.V., Preparation by the SHS method of promising ceramic materials based on borides, zirconium silicides and silicon carbide, Cand. Sci. (Eng.) Dissertation, Moscow: National Univ. of Science and Technology MISiS, 2018.

  36. Shetty, D.K., Wright, I.G., Mincer, P.N., and Clauer, A.H., Indentation fracture of WC-Co cermets, J. Mater. Sci., 1985, vol. 20, pp. 1985–1873.

    Article  Google Scholar 

  37. Vorotilo, S., Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Kochetov, N.A., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB, Ceram. Int., 2019, vol. 45, no. 1, pp. 96–107.

    Article  CAS  Google Scholar 

  38. Potanin, A.Yu., Zvyagintseva, N.V., Pogozhev, Yu.S., Levashov, E.A., Rupasov, S.I., Shtansky, D.V., Kochetov, N.A., and Kovalev, D.Yu., Silicon carbide ceramics SHS-produced from mechanoactivated Si–C–B mixtures, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 3, pp. 119–127.

    Article  CAS  Google Scholar 

  39. Derevyanko, I.V. and Polyakov, O.I., Studies of polytype silicon carbide produced from recycled materials, Metall. Min. Ind., 2012, vol. 4, pp. 14–18.

    Google Scholar 

  40. Weng, L., Han, W., and Hong, Ch., Fabrication and thermal shock resistance of HfB2–SiC composite with B4C additives, Mater. Sci.-Pol., 2011, vol. 29, pp. 248–252.

    Article  CAS  Google Scholar 

  41. Sciti, D., Brach, M., and Bellosi, A., Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic, Scr. Mater., 2005, vol. 53, pp. 1297–1302.

    Article  CAS  Google Scholar 

  42. Parthasarathy, T.A., Rapp, R.A., Opeka, M., and Cinibulk, M.K., Modeling oxidation kinetics of SiC-containing refractory diborides, J. Am. Ceram. Soc., 2012, vol. 95, no. 1, pp. 338–349.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Education of Russian Federation within the framework of the state assignment (project no. 0718-2020-0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Pogozhev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogozhev, Y.S., Potanin, A.Y., Rupasov, S.I. et al. Structure, Properties, and Oxidation Resistance of Prospective HfB2–SiC Based Ceramics. Russ. J. Non-ferrous Metals 61, 704–715 (2020). https://doi.org/10.3103/S1067821220060164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220060164

Keywords:

Navigation