Log in

Effect of the ZrO2 Content on the Strength Characteristics of the Matrix Material of Cdiamond–(WC–Co) Composites Synthesized by Spark Plasma Sintering

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract—For structurally homotypical specimens different in the ZrO2 content from the (94WC–6Co) + ZrO2 matrix material used in diamond-containing Сdiamond–(WC–Co) composites formed by spark plasma sintering, the dependences of the relative density ρrel, the ultimate strength under compression Rcm and bending Rbm, the microhardness НV, and the fracture toughness K on the zirconia content have been established. The addition of 6 wt % zirconia to the WC–6Co composite leads to an increase in the relative density from 0.948 to 0.990, the ultimate compression strength Rcm from 4950 ± 110 to 5600 ± 120 MPa, the ultimate bending strength Rbm from 1935 ± 80 to 2660 ± 115 MPa, and the fracture toughness K from 13.8 ± 0.71 to 16.9 ± 0.76 MPa m0.5 at a slight decrease in hardness (from 15.9 ± 0.72 to 15.1 ± 0.33 GPa). Such values are caused by the decrease of main WC phase grains in size with tetragonal t-ZrO2 phase transformation and, correspondingly, by the growing role of transformation strengthening mechanism and the active action of inner mechanical compressive microstresses. When the ZrO2 additive to the WC–6Co composite is increased to 10%, the parameters ρrel, Rcm, Rbm, and K are gradually decreased. At the same time, the material at the indentor imprint edge begins to destruct, and crack propagate in a chaotic way. It has been revealed that the properties ρrel, Rcm, Rbm, and KIc are worsened at a zirconia nanopowder content above 6 wt % in the WC–Co composite due to the formation of agglomerates during the mixing of components, their separation under sintering, and the formation of micropores and microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. Hereafter, the content of materials is given in wt %.

REFERENCES

  1. Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., and Baghbanan, A., Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock, Int. J. Refract. Met. Hard Mater., 2020, vol. 87, p. 105113.

    Article  CAS  Google Scholar 

  2. Ratov, B.T., Bondarenko, M.O., Mechnik, V.A., Strelchuk, V.V., Prikhna, T.A., Kolodnitskyi, V.M., Nikolenko, A.S., Lytvyn, P.M., Danylenko, I.M., Moshchil, V.E., Gevorkyan, E.S., Kosminov, A.S., and Borash, A.R., Structure and properties of WC–Co composites with different CrB2 concentrations, sintered by vacuum hot pressing, for drill bits, J. Superhard Mater., 2021, vol. 43, no. 5, pp. 344–354.

    Article  Google Scholar 

  3. Wang, J.L. and Zhang, S.H., A new diamond bit for extra-hard, compact and nonabrasive rock formation, J. Cent. South Univ. (Engl. Ed.), 2015, vol. 22, no. 4, pp. 1456‒1462.

  4. Bondarenko, N.A. and Mechnik, V.A., The influence of transition area diamond-matrix on wear resistance and operation properties of drilling tool produced by ISM, SOCAR Proc., 2011, no. 2, pp. 18–24.

  5. Ratov, B.T., Mechnik, V.A., Bondarenko, M.O., and Kolodnitskyi, V.M., Physical and mechanical properties of WC‒Co‒CrB2 matrices of composite diamond-containing materials sintered by vacuum hot pressing for drilling tool applications, J. Superhard Mater., 2022, vol. 44, no. 4, pp. 240‒251.

    Article  Google Scholar 

  6. Wang, X., Hwang, K.S., Koopman M., Fang Z.Z., and Zhang, L., Mechanical properties and wear resistance of functionally graded WC–Co, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 46–51.

    Article  Google Scholar 

  7. Tarrado, J.M., Roa, J.J., Valle, V., Marshall, M.J., and Lanes, L., Fracture and fatigue behavior of WC–Co and WC–Co, Ni cemented carbides, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, no. 3, pp. 184–191.

    Article  Google Scholar 

  8. Pero, R., Maizza, G., Montanari, R., and Ohmura, T., Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation, Materials, 2020, vol. 13, no. 9, p. 2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tyrala, D., Romanski, A., and Konstanty, J., The effects of powder composition on microstructure and properties of hot-pressed matrix materials for sintered diamond tools, J. Mater. Eng. Perform., 2020, vol. 29, pp. 1467–1472.

    Article  CAS  Google Scholar 

  10. Konstanty, J. and Romanski, A., New nanocrystalline matrix materials for sintered diamond tools, Mater. Sci. Appl., 2012, vol. 3, pp. 779–783.

    CAS  Google Scholar 

  11. Ratov, B.T., Mechnik, V.A., Gevorkyan, E., Matijosius, J., Kolodnitskyi, V.M., Chishkala, V.A., Kuzin, N.O., Siemiatkowski, Z., and Rucki, M., Influence of CrB2 additive on the morphology, structure, microhardness and fracture resistance of diamond composites based on WC‒Co matrix, Materialia, 2022, vol. 25, p. 101546.

    Article  CAS  Google Scholar 

  12. Ratov, B.T., Fedorov, B.V., Syzdykov, A.Kh., Zakenov, S.T., and Sudakov, A.K., The main directions of modernization of rock-destroying tools for drilling solid mineral resources, in Int. Multidiscip. Sci. GeoConf. SGEM. Sofia, 2021, vol. 21, Sect. 1.2: Exploration and Mining, pp. 503‒514.

  13. Bondarenko, N.A., Novikov, N.V., Mechnik, V.A., Olejnik, G.S., and Vereshchaka, V.M., Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC–6Co carbide system, Sverkhtverd. Mater., 2004, vol. 26, no. 6, pp. 3–15.

    Google Scholar 

  14. Aleksandrov, V.A., Zhukovsky, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  15. Zhang, J., Effect of reduction and carbonization temperature of tungsten powder on WC phase substructure and mechanical properties of tungsten-cobalt alloy, Cem. Carbide, 1990, vol. 1, pp. 1–7.

    Google Scholar 

  16. Lihui, Z., Kun, L., and Zhilin, L., Study on the hardening and toughening mechnisms of WC‒Co cemented carbides with plate-like WC grains, Rare Met. Mater. Eng., 2011, vol. 40, pp. 443‒446.

    Google Scholar 

  17. Li, Z. and Zhu, L., Microstructure and properties of WC–10% Co cemented carbides with plate-like WC grains, J. Cent. South Univ. (Sci. Technol.), 2010, vol. 41, pp. 521–525.

  18. Gu, Q., Han, Z., Xu, L., and Wei, S., Preparation of Ti-coated diamond/WC-Co-based cemented carbide composites by microwave-evaporation titanium-plating of diamond particles and microwave hot-press sintering, Ceram. Int., 2023, vol. 49, no. 6, pp. 10139–10150.

    Article  CAS  Google Scholar 

  19. Ponomarev, S.S., Shatov, A.V., Mikhailov, A.A., and Firstov, S.A., Carbon distribution in WC-based cemented carbides, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, no. 3, pp. 42–56.

    Article  CAS  Google Scholar 

  20. de Oliveira, L.J., Cabral, S.C., and Filgueira, M., Study hot pressed Fe-diamond composites graphitization, Int. J. Refract. Met. Hard Mater., 2012, vol. 35, no. 4, pp. 228–234.

    Article  CAS  Google Scholar 

  21. Novikov, N.V., Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1. Kinetic description of systems Cdiamond–VK6 and Cdiamond–(VK6–CrB2–W2B5), Fiz. Mezomekh., 2005, vol. 8, no. 2, pp. 99–106.

    CAS  Google Scholar 

  22. Bondarenko, N.A. and Mechnik, V.A., Drilling oil and gas wells by ISM diamond tools, SOCAR Proc., 2012, no. 3, pp. 6–12.

  23. Hu, Z.Y., Zhang, Z.H., Cheng, X.W., Wang, F.C., Zhang, Y.F., and Li, S.L., A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications, Mater. Des., 2020, vol. 191, p. 108662.

    Article  CAS  Google Scholar 

  24. Tokita, M., Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization, Ceramics, 2021, vol. 4, no. 2, pp. 160‒198.

    Article  CAS  Google Scholar 

  25. Lu, Z., Du, J., Sun, Y., Su, G., Zhang, C., Kong, X., and Kong, X., Effect of ultrafine WC contents on the microstructures, mechanical properties and wear resistances of regenerated coarse grained WC‒10Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2021, vol. 97, p. 105516.

    Article  CAS  Google Scholar 

  26. Yin, C., Peng, Y., Ruan, J., Zhao, L., Zhang, R., and Du, Y., Influence of Cr3C2 and VC content on WC grain size, WC shape and mechanical properties of WC‒6.0 wt. % Co cemented carbides, Materials, 2021, vol. 14, p. 1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, S., Han, S.H., Park, J.K., and Kim, H.E., Variation of WC grain shape with carbon content in the WC–Co alloys during liquid-phase sintering, Scr. Mater., 2003, vol. 48, no. 5, pp. 635–639.

    Article  CAS  Google Scholar 

  28. Yang, Q.M., Yu, S.S., Zheng, C.L., Liao, J.X., Li, J.Z., Chen, L.Y., Guo, S.D., Ye, Y.W., and Chen, H., Effect of carbon content on microstructure and mechanical properties of WC–10Co cemented carbides with plate-like WC grain, Ceram. Int., 2020, vol. 46, no. 2, pp. 1824–1829.

    Article  Google Scholar 

  29. Gu, L., Huang, J., and **e, C., Effects of carbon content on microstructure and properties of WC–20Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2014, vol. 42, pp. 228–232.

    Article  CAS  Google Scholar 

  30. Liu, K., Wang, Z.H., Yin, Z.B., Cao, L.Y., and Yuan, J.T., Effect of Co content on microstructure and mechanical properties of ultrafine grained WC–Co cemented carbide sintered by spark plasma sintering, Ceram. Int., 2018, vol. 44, no. 15, pp. 18711–18718.

    Article  CAS  Google Scholar 

  31. Wang, H., Webb, T., and Bitler, J.W., Study of thermal expansion and thermal conductivity of cemented WC–Co composite, Int. J. Refract. Met. Hard Mater., 2015, vol. 49, pp. 170–177.

    Article  CAS  Google Scholar 

  32. Fang, Z.Z., Correlation of transverse rupture strength of WC–Co with hardness, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, no. 2, pp. 119–127.

    Article  CAS  Google Scholar 

  33. Todd, R.I. and Derby, B., Thermal stress induced microcracking in alumina–20% SiCp composites, Acta Mater., 2004, vol. 52, no. 6, pp. 1621‒1629.

    Article  CAS  Google Scholar 

  34. Nohut, S., Prediction of crack-tip toughness of alumina for given residual stresses with parallel-bonded-particle model, Comput. Mater. Sci., 2011, vol. 50, no. 4, pp. 1509‒1519.

    Article  CAS  Google Scholar 

  35. Su, W., Zou, J., and Sun, L., Effects of nano-alumina on mechanical properties and wear resistance of WC‒8Co cemented carbide by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2020, vol. 92, p. 105337.

    Article  CAS  Google Scholar 

  36. Mechnik, V.A., Bondarenko, M.O., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Kuzin, M.O., and Gevorkyan, E.S., Influence of diamond–matrix transition zone structure on mechanical properties and wear of sintered diamond-containing composites based on Fe–Cu–Ni–Sn matrix with varying CrB2 content, Int. J. Refract. Met. Hard Mater., 2021, vol. 100, p. 105655.

    Article  CAS  Google Scholar 

  37. Sirota, V.V., Gevorkyan, É.S., Kovaleva, M.G., and Ivanisenko, V.V., Structure and properties of nanoporous ceramic Al2O3 obtained by isostatic pressing, Glass Ceram., 2013, vol. 69, nos. 9‒10, pp. 342‒345.

    Article  CAS  Google Scholar 

  38. Gevorkyan, E., Rucki, M., Panchenko, S., Sofronov, D., Chalko, L., and Mazur, T., Effect of SiC addition to Al2O3 ceramics used in cutting tools, Materials, 2020, vol. 13, no. 22, p. 5195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Gevorkian, E.S., Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system, J. Frict. Wear, 2018, vol. 39, no. 2, pp. 108–113.

    Article  Google Scholar 

  40. Ratov, B.T., Mechnik, V.A., Bondarenko, M.O., Kolodnitskyi, V.M., Kuzin, M.O., Gevorkyan, E.S., and Chishkala, V.A., Effect of vanadium nitride additive on the structure and strength characteristics of diamondcontaining composites based on the Fe‒Cu–Ni–Sn matrix, formed by cold pressing followed by vacuum hot pressing, J. Superhard Mater., 2021, vol. 43, no. 6, pp. 423–434.

    Article  Google Scholar 

  41. García, J., Ciprés, V.C., Blomqvist, A., and Kaplan, B., Cemented carbide microstructures: a review, Int. J. Refract. Met. Hard Mater., 2019, vol. 80, pp. 40–68.

    Article  Google Scholar 

  42. Zhao, S.X., Song, X.Y., Zhang, J.X., and Liu, X.M., Effects of scale combination and contact condition of raw powders on SPS sintered near-nano crystalline WC–Co alloy, Mater. Sci. Eng., A, 2008, vol. 473, pp. 323–329.

    Article  Google Scholar 

  43. Borik, M.A., Bublik, V.T., Kulebyakin, A.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Seryakov, S.V., and Tabachkova, N.Y., Change in the phase composition, structure and mechanical properties of directed melt crystallized partially stabilized zirconia crystals depending on the concentration of Y2O3, J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1889‒1894.

    Article  CAS  Google Scholar 

  44. Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, no. 3, pp. 461‒487.

    Article  CAS  Google Scholar 

  45. Gaillard, Y., Jiménez-Piqué, E., Soldera, F., Mücklich, F., and Anglada, M., Quantification of hydrothermal degradation in zirconia by nanoindentation, Acta Mater., 2008, vol. 56, no 16, pp. 4206‒4217.

    Article  CAS  Google Scholar 

  46. Yang, Y., Luo, L.M., Zan, X., Zhu, X.Y., Zhu, L., and Wu, Y.C., Synthesis of Y2O3-doped WC–Co powders by wet chemical method and its effect on the properties of WC–Co cemented carbide alloy, Int. J. Refract. Met. Hard Mater., 2020, vol. 92, p. 105324.

    Article  CAS  Google Scholar 

  47. Gevorkyan, E., Melnik, O., and Chishkala, V., The obtaining of high-density specimens and analysis of mechanical strength characteristics of a composite based on ZrO2–WC nanopowders, Nanoscale Res. Lett., 2014, vol. 9, p. 355.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gevorkyan, E., Prikhna, T., Vovk, R., Rucki, M., Siemiątkowski, Z., Kucharczyk, W., Chishkala, V., and Chałko, L., Sintered nanocomposites ZrO2–WC obtained with field assisted hot pressing, Compos. Struct., 2021, vol. 259, no. 1, p. 113443.

    Article  CAS  Google Scholar 

  49. Mechnik, V.A., Rucki, M., Ratov, B.T., Bondarenko, N.A., Gevorkyan, E.S., Kolodnitskyi, V.M., Chishkala, V.A., Morozova, O.M., and Kulich, V.G., Structure of Cdiamond–(WC–6Co)–ZrO2 composites formed by electrical plasma spark sintering, J. Superhard Mater., 2022, vol. 44, no. 5, pp. 302–322.

    Article  Google Scholar 

  50. Ratov, B.T., Mechnik, V.A., Rucki, M., Gevorkyan, E.S., Bondarenko, N.A., Kolodnitskyi, V.M., Chishkala, V.A., Kudaikulova, G.A., Muzaparova, A.B., and Korostyshevskyi, D.L., Cdiamond–(WC–Co)–ZrO2 composite materials with improved mechanical and adhesive properties, J. Superhard Mater., 2023, vol. 45, no. 2, pp. 103–117.

    Article  Google Scholar 

  51. Ratov, B.T., Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Gevorkyan, E.S., Nerubaskyi, V.P., Gusmanova, A.G., Fedorov, B.V., Kaldibaev, N.A., Arshidinova, M.T., and Kulych, V.G., Features structure of the Cdiamond‒(WC‒Co)‒ZrO2 composite fracture surface as a result of impact loading, J. Superhard Mater., 2023, vol. 45, no. 5, pp. 348–359.

    Article  Google Scholar 

  52. Kodash, V.Y. and Gevorkian, E.S., Pat. 6617271 B1 USA: IC C04B 35/56, 2003.

  53. Evans, A.G. and Charles, E.A., Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 1976, vol. 59, nos. 7‒8, pp. 371–372.

    Article  CAS  Google Scholar 

  54. Brookes, K.J.A., World Directory and Handbook of Hardmetals and Hard Materials, UK: International Carbide Data, 1992, 5th ed.

    Book  Google Scholar 

  55. Lisovsky, A.F., Some speculations on an increase of WC‒Co cemented carbide service life under dynamic loads, Int. J. Refract. Met. Hard. Mater., 2003, vol. 21, nos. 1–2, pp. 63‒67.

    Article  CAS  Google Scholar 

  56. Ratov, B.T., Mechnik, V.A., Bondarenko, N.A., Gevorkyan, E.S., Kolodnitskyi, V.M., Kalzhanova, A.B., Sundetova, P.S., and Utepov, Z.G., Phase formation and diamond retention in Cdiamond–(WC–Co) ZrO2 composites formed by spark plasma sintering method, J. Superhard Mater., 2024, vol. 46, no. 2, pp. 112–128.

  57. Ratov, B.T., Mechnik, V.A., Bondarenko, N.A., Strelchuk, V.V., Prikhna, T.A., Kolodnitskyi, V.M., Nikolenko, A.S., Lytvyn, P.M., Danylenko, I.M., Moshchil, V.E., Gevorkyan, E.S., and Chishkala, V.A., Phase formation and physicomechanical properties of WC–Co–CrB2 composites sintered by vacuum hot pressing for drill tools, J. Superhard Mater., 2022, vol. 44, no. 1, pp. 1–11.

    Article  Google Scholar 

  58. Lisovsky, A.F., Role of materials science in increasing the efficiency of rock-destruction tool equipped with WC–Co cemented carbide inserts: a review, J. Superhard Mater., 2020, vol. 42, no. 4, pp. 203‒222.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AR08857201) and the Ministry of Education and Science of Ukraine (state registration no. 0117U000391) and financed within project MSCA4Ukraine of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Ethics declarations

The authors of this work declare that they have no conflict of interests.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratov, B.T., Hevorkian, E., Mechnik, V.A. et al. Effect of the ZrO2 Content on the Strength Characteristics of the Matrix Material of Cdiamond–(WC–Co) Composites Synthesized by Spark Plasma Sintering. J. Superhard Mater. 46, 175–186 (2024). https://doi.org/10.3103/S1063457624030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457624030079

Keywords:

Navigation