Log in

Ideal stoichiometric technetium nitrides under pressure: A first-principles study

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Technetium nitrides with various ideal stoichiometries have been investigated with the first-principle method at the pressures between 0–60 GPa. It have been found that there could be many stable technetium nitrides including Tc3N, Tc2N, TcN, Tc2N3, TcN2, TcN3, and TcN4, among which Tc3N and Tc2N subnitrides are synthesizable at zero pressure and could be applied to nuclear waste management, such as separate radioactive 99Tc from nuclear fuel cycle. Moreover, N-rich TcN3 and TcN4 exhibit remarkable bulk properties and can be potential ultrastiff and hard materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaner, R.B., Gilman, J.J., and Tolbert, S.H., Designing superhard materials, Science, 2005, vol. 308, pp. 1268–1269.

    Article  CAS  Google Scholar 

  2. Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. K., and Hemley, R.J., Synthesis and characterization of a binary noble metal nitride, Nat. Mater., 2004, vol. 3, pp. 294–297.

    CAS  Google Scholar 

  3. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Evans, C.L., Morrall, P.G., Ferreira, J.L., and Nelson, A.J., Synthesis and characterization of the nitrides of platinum and iridium, Science, 2006, vol. 311, pp. 1275–1278.

    Article  CAS  Google Scholar 

  4. Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H.K., Synthesis of novel transition metal nitrides IrN2 and OsN2, Phys. Rev. Lett., 2006, vol. 96, art. 155501.

  5. Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Zaug, J.M., Aberg, D., Meng, Y., and Prakapenka, V.B., Synthesis and characterization of nitrides of iridium and palladium, J. Mater. Res., 2008, vol. 23, pp. 1–5.

    Article  CAS  Google Scholar 

  6. Friedrich, A., Winkler, B., Bayarjargal, L., Morgenroth, W., Juarez-Arellano, E.A., Milman, V., Refson, K., Kunz, M., and Chen, K., Novel rhenium nitrides, Phys. Rev. Lett., 2010, vol. 105, art. 085504.

  7. Maes, A., Geraedts, K., Bruggeman, C., Vancluysen, J., Rossberg, A., and Hennig, C., Evidence for the interaction of technetium colloids with humic substances by X-ray absorption spectroscopy, Environ. Sci. Technol., 2004, vol. 38, pp. 2044–2051.

    Article  CAS  Google Scholar 

  8. Trzebiatowski, W. and Rudzinski, J., The composition and structure of technetium nitride and technetium borides, J. Less Common Met., 1964, vol. 6, pp. 244–245.

    Article  CAS  Google Scholar 

  9. Liang, Y., Li, C., Guo, W., and Zhang, W., First-principles investigation of technetium carbides and nitrides, Phys. Rev. B, 2009, vol. 79, art. 024111.

  10. Wang, Y., Yao, T., Li, H., Lian, J., Li, J., Li, Z., Zhang, J., and Gou, H., Structural stability, phase transition, and mechanical and electronic properties of transition metal nitrides MN (M = Tc, Re, Os, and Ir): First-principles calculations, Comp. Mater. Sci., 2012, vol. 56, pp. 116–121.

    Article  CAS  Google Scholar 

  11. Weck, P.F., Kim, E., and Czerwinski, K.R., Interplay between structure, stoichiometry, and properties of technetium nitrides, Dalton Trans., 2011, vol. 40, pp. 6738–6744.

    Article  CAS  Google Scholar 

  12. Du, X.P., Lo, V.C., and Wang, Y.X., The effect of structure and phase transformation on the mechanical properties of Re2N and the stability of Mn2N, J. Comput. Chem., 2012, vol. 33, pp. 18–24.

    Article  CAS  Google Scholar 

  13. Oganov, A.R., and Glass, C.W., Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys., 2006, vol. 124, art. 244704.

  14. Oganov, A.R., Lyakhov, A.O., and Valle, M., How evolutionary crystal structure prediction works-and why, Acc. Chem. Res., 2011, vol. 44, pp. 227–237.

    Article  CAS  Google Scholar 

  15. Lyakhov, A.O., Oganov, A.R., Stokes, H.T., and Zhu, Q., New developments in evolutionary structure prediction algorithm USPEX, Comput. Phys. Commun., 2013, vol. 184, pp. 1172–1182.

    Article  CAS  Google Scholar 

  16. Friedrich, A., Winkler, B., Juarez-Arellano, E.A., and Bayarjargal, L., Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations, Materials, 2011, vol. 4, pp. 1648–1692.

    Article  CAS  Google Scholar 

  17. Kresse, G. and Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  18. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Ibid., 1999, vol. 59, pp. 1758–1775.

    Article  CAS  Google Scholar 

  19. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    Article  CAS  Google Scholar 

  20. Perdew, J.P. and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 1981, vol. 23, pp. 5048–5079.

    Article  CAS  Google Scholar 

  21. Togo, A., http://phonopy.sourceforge.net/.

  22. Togo, A., Oba, F., and Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B, 2008, vol. 78, art. 134106.

  23. Parlinski, K., Li, Z. Q., and Kawazoe, Y., First-principles determination of the soft mode in cubic ZrO2, Phys. Rev. Lett., 1997, vol. 78, pp. 4063–4066.

    Article  CAS  Google Scholar 

  24. Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 1952, vol. 65, pp. 349–354.

    Article  Google Scholar 

  25. Li, D., Tian, F., Duan, D., Bao, K., Chu, B., Sha, X., Liu, B., and Cui, T., Mechanical and metallic properties of tantalum nitrides from first-principles calculations, RSC Adv., 2014, vol. 4, pp. 10133–10139.

    Article  CAS  Google Scholar 

  26. Wu, Z.J., Zhao, E.J., **ang, H.P., Hao, X.F., Liu, X.J., and Meng, J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, vol. 76, art. 054115.

  27. Gilman, J.J., Cumberland, R.W., and Kaner, R.B., Design of hard crystals, Int. J. Refract. Met. Hard Mater, 2006, vol. 24, pp. 1–5.

    Article  CAS  Google Scholar 

  28. Chen, X.Q., Niu, H.Y., Li, D.Z., and Li, Y.Y., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, pp. 1275–1281.

    Article  CAS  Google Scholar 

  29. Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., and Tian, Y., Hardness of covalent crystals, Phys. Rev. Lett., 2003, vol. 91, art. 015502.

  30. Šimunek, A., and Vackár, J., Hardness of covalent and ionic crystals: First-principle calculations, Ibid., 2006, vol. 96, art. 085501.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Cui.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z.L., Bao, K., Duan, D.F. et al. Ideal stoichiometric technetium nitrides under pressure: A first-principles study. J. Superhard Mater. 36, 288–295 (2014). https://doi.org/10.3103/S1063457614040078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457614040078

Keywords

Navigation