Log in

Investigation of U(VI) and Th(IV) Adsorption Behavior onto El-Zafarana Silica Sand Modified with Metal Oxides

  • PHYSICAL CHEMISTRY OF WATER TREATMENT PROCESSES
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

El-Zafarana silica sand (ZSS) was modified with ZnO and CuO forming the new adsorbent ZnO−CuO/ZSS for removing U(VI) and Th(VI) from aqueous solutions. The removal process was performed in a series of batch experiments. The prepared adsorbent was characterized using different analysis techniques: scanning electron microscopy/energy-dispersive X-ray (SEM/EDX), X-ray diffraction (XRD), and Fourier-transforms infrared spectroscopy (FTIR). The influence of various parameters: pH, contact time, initial concentration, and temperature, on the adsorption process was studied. Kinetics and isothermal data reveal the chemisorption and the homogenous adsorption process with maximum adsorption capacities of 73.31 and 64.93 mg/g for at pH 6 and 5 for U(VI) and Th(IV), respectively. The thermodynamic parameters (ΔH°, ΔS°, ΔG°) confirm the endothermic nature of the adsorption process. The desorption study was carried out and found that ZnO–CuO/ZSS can effectively recover U(VI) and Th(IV) by 0.01 M HNO3. The results indicate that ZnO–CuO/ZSS is an efficient adsorbent for U(VI) and Th(IV) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Wang, Y., Chen, Y., and Liu, C., The effect of magnesium oxide morphology on adsorption of U(VI) from aqueous solution, Chem. Eng. J., 2017, vol. 316, pp. 936–950.

    Article  CAS  Google Scholar 

  2. Liu, R., Zhang, W., Chen, Y., and Wang, Y., Uranium(VI) adsorption by copper and copper/iron bimetallic central MOFs, Colloids Surf., A, 2020, vol. 587, p. 124334.

    Article  CAS  Google Scholar 

  3. Hu, P., Nan, Y., Ta, W., Shan, Q., Zhong, Y., Le, Z., Li, T., Chen, S., and Qian, L. , Investigation of U(VI), Th(IV), and Eu(III) ions’ sorption behaviour onto silica gel modified with anhydride, J. Radioanal. Nucl. Chem., 2019, vol. 321, pp. 733–745.

    Article  CAS  Google Scholar 

  4. Sarafraz, H., Minuchehr, A., Alahyarizadeh, G., and Rahimi, Z., Synthesis of enhanced phosphonic functional groups mesoporous silica for uranium selective adsorption from aqueous solutions, Sci Rep., 2017, vol. 7, pp. 11675–11682.

    Article  CAS  Google Scholar 

  5. Elhefnawy, O.A. and Elabd, A.A., Highly efficient elimination of uranium(VI) and thorium(IV) from aqueous solution using activated carbon immobilized on polystyrene, Pigm. Resin Technol., 2023. https://doi.org/10.1108/PRT-09-2022-0107

  6. Elhefnawy, O.A. and Elabd, A.A., Optimization of uranyl ions removal from aqueous solution by natural and modified kaolinites, Radiochim. Acta, 2017, vol. 105, no. 8, pp. 609–620.

    Article  CAS  Google Scholar 

  7. Bachmaf, S. and Merkel, B.J., Sorption of uranium(VI) at the clay mineral-water interface, Environ Earth Sci., 2011, vol. 63, pp. 925–934. https://doi.org/10.1007/s12665-010-0761-6

    Article  CAS  Google Scholar 

  8. Kutahyalı, C. and Eral, M., Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects, J. Nucl. Mater., 2010, vol. 396, pp. 251–256.

    Article  Google Scholar 

  9. Ismaiel, H.A.H., Askalany, M.M. and Ali, A.I., Evaluation of white silica sands in North Eastern Desert, Egypt, Int. J. Sci. Eng. Res., 2017, vol. 8, pp. 2229–551.

    Google Scholar 

  10. He, X., Yang, D., Zhang, X., Liu, M., Kan, Z., Lin, C., Ji, N., and Luqu, R., Waste eggshell membrane-templated CuO–ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification, Chem. Eng. J., 2019, vol. 369, pp. 621–633.

    Article  CAS  Google Scholar 

  11. Sharma, M., Poddar, M., Gupta, Y., Nigam, S., Avasthi, D.K., Adelung, R., Abolhassani, R., Fiutowski, J., Joshi, M., and Mishra, Y.K., Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite, Mater. Today Chem., 2020, vol. 17, p. 100336.

    Article  Google Scholar 

  12. Elhefnawy, O.A. and Elabd, A.A., Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions, Radiochim. Acta, 2017, vol. 105, no. 10, pp. 821–830.

    Article  CAS  Google Scholar 

  13. Abdi, M.R., Shakur, H.R., Rezaee, K.H., Saraee, E., and Sadeghi, M., Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: Effects of nano concentration and cation exchange, Radioanal. Nucl. Chem., 2014, vol. 300, pp. 1217–1225, https://doi.org/10.1007/s10967-014-3092-3

    Article  CAS  Google Scholar 

  14. Manimaran, R., Palaniradja, K., Alagumurthi, N., Sendhilnathan, S., and Hussain, J., Preparation and characterization of copper oxide nanofluid for heat transfer applications, Appl. Nanosci., 2014, vol. 4, pp. 163–167. https://doi.org/10.1007/s13204-012-0184-7

    Article  CAS  Google Scholar 

  15. Kanani, M.V., Dhruv, D., Rathod, H.K., Rathod, K.N., Rajyaguru, B., Joshi, A.D., Solanki, P.S., Shah, N.A., and Pandya, D.D., Investigations on structural, optical and electrical property of ZnO–CuO core–shell nano-composite, Scr. Mater., 2019, vol. 165, pp. 25–28.

    Article  CAS  Google Scholar 

  16. Gholivand, K. and Yaghoubi, R., Synthesis and characterization of one-dimensional Cu(II) coordination polymer in bulk and nano scales: New precursor for preparation of Cu(II) oxide nanoparticles, J. Inorg. Organomet. Polym., 2013, vol. 23, pp. 1289–1295. https://doi.org/10.1007/s10904-013-9921-y

    Article  CAS  Google Scholar 

  17. Li, Y., Church, J.S., Woodhead, A.L., and Moussa, F., Preparation and characterization of silica coated iron oxide magnetic nano-particles, Spectrochim. Acta, Part A, 2010, vol. 76, pp. 484–489.

    Article  Google Scholar 

  18. Zeng, M., Huang, Y., Zhang, S., Qin, S., Li, J., and Xu, J., Removal of uranium(VI) from aqueous solution by magnetic yolk–shell iron oxide@magnesium silicate microspheres, RSC Adv., 2014, vol. 4, p. 5021. https://doi.org/10.1039/c3ra45330h

    Article  CAS  Google Scholar 

  19. Anirudhan, T.S., Rijith, S., and Tharun, A.R., Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies, Colloids Surf., A, 2010, vol. 368, pp. 13–22. https://doi.org/10.1016/j.colsurfa.2010.07.005

    Article  CAS  Google Scholar 

  20. Lyu, P., Wang, G., Wang, B., Yin, Q., Li Y., and Deng, N., Adsorption and interaction mechanism of uranium(VI) from aqueous solutions on phosphate-impregnation biochar cross-linked Mg–Al layered double-hydroxide composite, Appl. Clay Sci., 2021, vol. 209, pp. 106–146.

    Article  Google Scholar 

  21. Shuang, S., Zhang, S., Huang, Shuyi, Z., Rui, Y., Ling, Y., Hu, W., Tao, Z., Li, H., and Wang, X., A novel multi-shelled Fe3O4@MnOx hollow microspheres for immobilizing U(VI) and Eu(III), Chem. Eng. J., 2019, vol. 355, pp. 697–709.

    Article  Google Scholar 

  22. Sharma, M., Joshi, M., Nigam, S., Avasthi, D.K., Adelung, R., Srivastava, S.K., and Mishra, Y.K., Efficient oil removal from wastewater based on polymer coated superhydrophobic tetrapodal magnetic nanocomposite adsorbent, Appl. Mater. Today, 2019, vol. 17, pp. 130–141. https://doi.org/10.1016/j.apmt.2019.07.007

    Article  Google Scholar 

  23. Li, D., Egodawatte, S., Kaplan, D.I., Larsen, S.C., Serkiz, S.M., and Seaman, J.C., Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater, J. Hazard. Mater., 2016, vol. 317, pp. 494–502.

    Article  CAS  Google Scholar 

  24. Zhou, L., Ouyang, J., Liu, Z., Huang, G., Wang, Y., Li Z., and Adesoji, A.A., Highly efficient sorption of U(VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres, J. Radioanal. Nucl. Chem., 2019, vol., 319, pp. 987–995. https://doi.org/10.1007/s10967-018-6381-4

    Article  CAS  Google Scholar 

  25. Zhao, Y., Li, J., Zhang, S., Huang, Y., Wu, X., and Wang, X., Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI), Chem. Eng. J., 2014, vol. 235, pp. 275–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Elhefnawy.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY

The data supporting this study’s findings are available on request from the corresponding author, who therefore bears the total responsibility of the contents of Supporting Information thus supplied.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhefnawy, O.A., Elabd, A.A. Investigation of U(VI) and Th(IV) Adsorption Behavior onto El-Zafarana Silica Sand Modified with Metal Oxides. J. Water Chem. Technol. 45, 419–428 (2023). https://doi.org/10.3103/S1063455X23050053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X23050053

Keywords:

Navigation