Log in

Broadband Plasmonics with Titanium Oxynitride

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Electromagnetic phenomena accompanying plasmon resonances underpin a rich diversity of photonic devices. Noble metals have long constituted a material platform for plasmonics. Recent years have witnessed a realization of photonic devices based on alternative plasmonic media. This enabled to implement novel functionalities previously unattainable with the conventional materials. Recently, tunable optical materials, such as transition metal nitrides (TiN, ZrN, HfN) and transparent conducting oxides (ITO, AZO, GZO), have attracted a broad interest. The spectral position of plasmon resonance in these media can be tuned within visible and near-infrared ranges at the synthesis stage. Nevertheless, plasmon resonance can still be excited at only one frequency. This work is devoted to the development of materials with the broadband plasmonic response. The applications of broadband plasmonic materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Li, W., Guler, U., Kinsey, N., Naik, G.V., Boltasseva, A., Guan, J., Shalaev, V.M., and Kildishev, A.V., Adv. Mater., 2014, vol. 26, p. 7959. https://doi.org/10.1002/adma.201401874

    Article  Google Scholar 

  2. Kharintsev, S.S., Kharitonov, A.V., Chernykh, E.A., Alekseev, A.M., Filippov, N.A., and Kazarian, S.G., Nanoscale, 2022, vol. 14, p. 12117. https://doi.org/10.1039/D2NR03015B

    Article  Google Scholar 

  3. Kharintsev, S.S., Kharitonov, A.V., Alekseev, A.M., and Kazarian, S.G., Nanoscale, 2019, vol. 11, p. 7710. https://doi.org/10.1039/C8NR09890E

    Article  Google Scholar 

  4. Kharintsev, S.S., Kharitonov, A.V., Gazizov, A.R., and Kazarian, S.G., ACS Appl. Mater. Interfaces, 2020, vol. 12, p. 3862. https://doi.org/10.1021/acsami.9b19555

    Article  Google Scholar 

  5. Naik, G.V., Shalaev, V.M., and Boltasseva, A., Adv. Mater., 2013, vol. 25, p. 3264. https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  6. Kharitonov, A.V. and Kharintsev, S.S., Opt. Mater. Express, 2020, vol. 10, p. 513. https://doi.org/10.1364/OME.382160

    Article  ADS  Google Scholar 

  7. Kharitonov, A.V., Yanilkin, I.V., Gumarov, A.I., Va-khitov, I.R., Yusupov, R.V., Tagirov, L.R., Kharin-tsev, S.S., and Salakhov, M.Kh., Thin Solid Films, 2018, vol. 653, p. 200. https://doi.org/10.1016/j.tsf.2018.03.028

    Article  ADS  Google Scholar 

  8. Braic, L., Vasilantonakis, N., Mihai, A., Villar Garcia, I.J., Fearn, S., Zou, B., Alford, N.M., Doiron, B., Oulton, R.F., Maier, S.A., Zayats, A.V., and Petrov, P.K., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 29857. https://doi.org/10.1021/acsami.7b07660

    Article  Google Scholar 

  9. Britton, W.A., Chen, Y., and Dal Negro, L., Opt. Mater. Express, 2019, vol. 9, p. 878. https://doi.org/10.1364/OME.9.000878

    Article  ADS  Google Scholar 

  10. Wen, X., Li, G., Gu, C., Zhao, J., Wang, S., Jiang, C., Palomba, S., Martijn de Sterke, C., and **ong, Q., ACS Photonics, 2018, vol. 5, p. 2087. https://doi.org/10.1021/acsphotonics.8b00419

    Article  Google Scholar 

  11. Stockman, M.I., Opt. Express, 2011, vol. 19, p. 22029. https://doi.org/10.1364/OE.19.022029

    Article  ADS  Google Scholar 

Download references

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kharitonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharitonov, A.V., Kharintsev, S.S. Broadband Plasmonics with Titanium Oxynitride. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S92–S95 (2022). https://doi.org/10.3103/S1062873822700459

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700459

Keywords:

Navigation