Log in

Electrophysical Characteristics of Polyvinyl Alcohol/Mn–Zn Ferrite–Spinel Magnetic Polymer Composites

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Electrophysical properties of polyvinyl alcohol/Mn–Zn ferrite composites are studied in the 0.05–7 GHz range of frequencies. It is found that the concentration of ferrite determines the values of dielectric permittivity and magnetic permeability. It is shown that composites with ferrite fractions of 0.2 and 0.4 can be used as radar absorbing materials, while those with fractions of 0.6 and 0.8 can be used as radio shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Spodobaev, Yu.M. and Kubanov, V.P., Osnovy elektromagnitnoi ekologii (Fundamentals of Electromagnetic Ecology), Moscow: Radio Svyaz’, 2000.

  2. Hamzany, Y., Feinmesser, R., Shpitzer, T., et al., Antioxid. Redox Signaling, 2013, vol. 18, p. 622.

    Article  Google Scholar 

  3. Hao, Y.H., Zhao, L., and Peng, R.Y., Biomed. Environ. Sci., 2018, vol. 31, no. 1, p. 57.

    Google Scholar 

  4. Kumar, D., Moharana, A., and Kumar, A., Mater. Today Chem., 2020, vol. 17, 100346.

    Article  Google Scholar 

  5. Mikhailin, Yu.A., Spetsial’nye polimernye kompozitsionnye materialy (Special Polymer Composite Materials), St. Petersburg: Nauchn. Osnovy Tekhnol., 2009.

  6. Yakushko, E.V., Kozhitov, L.V., Muratov, D.G., et al., Russ. Phys. J., 2021, vol. 63, no. 12, p. 2226.

    Article  Google Scholar 

  7. Shakirzyanov, R.I., Kostishyn, V.G., Morchenko, A.T., et al., Russ. J. Inorg. Chem., 2020, vol. 65, no. 6, p. 829.

    Article  Google Scholar 

  8. Kochervinskii, V.V., Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 2, p. 144.

    Article  Google Scholar 

  9. Vyzulin, S.A., Buz’ko, V.Y., Kalikintseva, D.A., et al., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, no. 9, p. 1019.

    Article  Google Scholar 

  10. Aslam, M., Kalyar, M.A., and Raza, Z.A., Polym. Eng. Sci., 2018, vol. 58, p. 2119.

    Article  Google Scholar 

  11. Zhang, Q., Liu, C., Wu, Z., et al., J. Magn. Magn. Mater., 2019, vol. 479, p. 337.

    Article  ADS  Google Scholar 

  12. Lahsmin, Y.K., Heryanto, H., Ilyas, S., et al., Opt. Mater., 2021, vol. 111, 110639.

    Article  Google Scholar 

  13. Abdullah, B., Ilyas, S., and Tahir, D., J. Nanomater., 2018, vol. 2018, 9823263.

    Article  Google Scholar 

  14. Kumar, S., Datt, G., Kumar, A.S., and Abhyankar, A.C., J. Appl. Phys., 2016, vol. 120, 164901.

    Article  ADS  Google Scholar 

  15. Kostishin, V.G., Vergazov, R.M., Men’shova, S.B., et al., Zavod. Lab., Diagn. Mater., 2021, vol. 87, no. 1, p. 30.

    Google Scholar 

  16. Kostishin, V.G., Vergazov, R.M., Men’shova, S.B., and Isaev, I.M., Ross. Tekhnol. Zh., 2020, vol. 8, no. 6(38), p. 87.

  17. Isaev, I.M., Kostishin, V.G., Korovushkin, V.V., et al., Tech. Phys., 2021, vol. 66, no. 9, p. 1216.

    Article  Google Scholar 

  18. Kostishin, V.G., Vergazov, R.M., Andreev, V.G., et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2010, vol. 4, p. 18.

    Google Scholar 

  19. Vyzulin, S.A., Buz’ko, V.Y., Kalikintseva, D.A., and Miroshnichenko, E.L., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 105.

    Article  Google Scholar 

  20. Handoko, E., Mangasi, A.M., Iwan, S., et al., MATEC Web. Conf., 2018, vol. 197, 02007.

  21. Ravinder, D. and Latha, K., J. Appl. Phys., 1994, vol. 75, p. 6118.

    Article  ADS  Google Scholar 

  22. Mathur, P., Thakur, A., and Singh, M., Int. J. Mod. Phys. B, 2009, vol. 23, no. 11, p. 2523.

    Article  ADS  Google Scholar 

  23. Rahman, M.T., Vargas, M., and Ramana, C.V., J. Alloys Compd., 2014, vol. 617, p. 547.

    Article  Google Scholar 

  24. Bobrovskii, S.Y., Garanov, V.A., Naboko, A.S., et al., EPJ Web Conf., 2018, vol. 185.

  25. Babayan, V., Kazantseva, N.E., Moučka, R., et al., J. Magn. Magn. Mater., 2012, vol. 324, no. 2, p. 161.

    Article  ADS  Google Scholar 

  26. Moučka, R., Lopatin, A.V., Kazantseva, N.E., et al., J. Mater. Sci., 2008, vol. 42, p. 9480.

    Article  ADS  Google Scholar 

  27. Wu, Y., Han, M., Tang, Z., and Deng, L., J. Appl. Phys., 2014, vol. 115, 163902.

    Article  ADS  Google Scholar 

  28. Tsutaoka, T., Kasagi, T., and Hatakeyama, K., J. Appl. Phys., 2011, vol. 110, 053909.

    Article  ADS  Google Scholar 

  29. Lagarkov, A.N. and Rozanov, K.N., J. Magn. Magn. Mater., 2009, vol. 321, no. 14, p. 2082.

    Article  ADS  Google Scholar 

  30. Saini, M., Shukla, R., and Kumar, A., J. Magn. Magn. Mater., 2019, vol. 491, 165549.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Shakirzyanov.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by N. Podymova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostishyn, V.G., Shakirzyanov, R.I., Isaev, I.M. et al. Electrophysical Characteristics of Polyvinyl Alcohol/Mn–Zn Ferrite–Spinel Magnetic Polymer Composites. Bull. Russ. Acad. Sci. Phys. 86, 618–622 (2022). https://doi.org/10.3103/S1062873822050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822050124

Navigation