Log in

Ultrasonic microscopy of contact joints

  • Proceedings of the Russian Academy of Sciences’ Research Board Seminar on Acoustics“Topical Achievements in Acoustics: Achievements in Acoustics 2016”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Ultrasonic techniques allow examination of internal structure and the detection of discontinuities at the interface of various joints. Contact joints obtained via diffusion welding, sintering, and other adhesive methods are investigated using impulse acoustic microscopy. It is shown that short probing pulses of focused ultrasound with frequencies of 50–100 MHz reveal areas with different adhesion strengths, areas of partial contact, peeling or air bubbles, and buffer layer thicknesses. Mechanisms of acoustic contrast at such interfaces are discussed. The results are of interest to specialists in the field of high-resolution ultrasonic nondestructive testing. They are needed to predict the failure mechanisms of composite products, from carbon fiber–reinforced plastics for the aviation industry to high-density ceramics used in medical prosthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schilling, P.J., Prakash, R.Bh., et al., Compos. Sci. Technol., 2005, vol. 65, p. 2071.

    Article  Google Scholar 

  2. Chia, C.C., Jeong, Y.-M., Lee, J.-R., et al., Struct. Control Health Monit., 2012, vol. 19, no. 7, p. 605.

    Article  Google Scholar 

  3. Tittmann, B.R., Miyasaka, C., Guers, M., et al., in Non-Destructive Evaluation (NDE) of Polymer Matrix Composites. Techniques and Applications, Karbhari, V.M., Ed., Cambridge: Woodhead Publ., 2013, p. 423.

  4. Shiino, M.Y., Candida, M., and Faria, M., Mater. Res. (Sao Carlos, Braz.), 2012, vol. 15, no. 4, p. 495.

    Article  Google Scholar 

  5. Al-Shehri, S.A., Mohammed, H., and Wilson, C.A., J. Prosthet. Dent., 1996, vol. 76, p. 23.

    Article  Google Scholar 

  6. Isgro, G., Pallav, P., and van der Zel, J.M., J. Prosthet. Dent., 2003, vol. 90, p. 465.

    Article  Google Scholar 

  7. Rudenberg, H.G. and Rudenberg, P.G., Adv. Imaging Electron Phys., 2010, vol. 160, p. 171.

    Article  Google Scholar 

  8. Munns, I.J. and Georgiou, G.A., Insight, 1995, vol. 37, p. 941.

    Google Scholar 

  9. Adams, R.D. and Cawley, P., Constr. Build. Mater., 1989, vol. 3, p. 170.

    Article  Google Scholar 

  10. Shepard, S.M., Anti-Corros. Methods Mater., 1997, vol. 44, p. 236.

    Article  Google Scholar 

  11. Rokhlin, S., Hefets, M., and Rosen, M., J. Appl. Phys., 1981, vol. 52, p. 2847.

    Article  ADS  Google Scholar 

  12. Light, G.M. and Kwun, H., in Proc. 17th Symp. on Nondestructive Evaluation, San Antonio, 1989, p. 251.

    Google Scholar 

  13. Derby, B., Briggs, G.A.D., and Wallach, E.R., J. Mater. Sci., 1983, vol. 18, p. 2345.

    Article  ADS  Google Scholar 

  14. Nagy, P.B., J. Adhes. Sci. Technol., 1991, vol. 5, p. 619.

    Article  Google Scholar 

  15. Gilmore, R.S., Tam, K.C., Young, J.D., and Howard, D.R., Philos. Trans. R. Soc., 1986, vol. 320, p. 215.

    Article  ADS  Google Scholar 

  16. Vijaya Kumar, R.L., Bhat, M.R., and Murthy, C.R.L., Int. J. Adhes. Adhes., 2013, vol. 42, p. 60.

    Article  Google Scholar 

  17. Zinin, P.V., Arnold, W., Weise, W., and Berezina, S., in Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications, Kundu, T., Ed., CRC Press, 2012, p. 611.

    Google Scholar 

  18. Petronyuk, Yu.S., Levin, V.M., Morokov, E.S., Ryzhova, T.B., Chernov, A.V., and Gulevsky, I.V., Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 10, p. 1224.

    Article  Google Scholar 

  19. Zakutailov, K.V., Levin, V.M., and Petronyuk, Y.S., Inorg. Mater., 2010, vol. 46, no. 15, p. 1635.

    Article  Google Scholar 

  20. Petronyuk, Yu.S., Morokov, E.S., and Levin, V.M, Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1268.

    Article  Google Scholar 

  21. Levin, V.M., Petronyuk, Y.S., Morokov, E.S., et al., Phys. Status Solidi B, 2016, vol. 253, no. 10, p. 1952. doi 10.1002/pssb.201600077

    Article  ADS  Google Scholar 

  22. Murashov, V.V., Aviats. Prom-st., 2011, vol. 3, p. 8.

    Google Scholar 

  23. Kogan, D.I., Chursova, L.V., and Petrova, A.P., Polym. Sci., Ser. D, 2012, vol. 5, no. 1, p. 60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Levin.

Additional information

Original Russian Text © V.M. Levin, E.S. Morokov, Y.S. Petronyuk, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2017, Vol. 81, No. 8, pp. 1053–1058.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.M., Morokov, E.S. & Petronyuk, Y.S. Ultrasonic microscopy of contact joints. Bull. Russ. Acad. Sci. Phys. 81, 950–955 (2017). https://doi.org/10.3103/S1062873817080196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873817080196

Navigation