Log in

Studying the dynamics of microdefect growth in carbon fiber reinforced plastics under mechanical loading by means of ultrasonic microscopy

  • Proceedings of the Russian Academy of Sciences’ Research Board Seminar “Topical Achievements in Acoustics, 2015”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Strength characteristics of carbon fiber reinforced plastics (CFRPs) are investigated by nondestructive means as microstructural changes in a material’s bulk under external mechanical loads. CFRP microstructure is studied experimentally via pulsed ultrasonic microscopy at the level of mechanical deformation resulting in degradation of a material’s properties. The process of composite deformation is studied by means of stepped stretching. Acoustic emissions are used to identify the stage preceding final destruction (the accumulation of microcracks, fibers breaking, and delamination) as an indicator of a material’s degradation. Pulse acoustic microscopy is used to observe the accumulation of microcracks in individual layers of a material. To study the behavior of a CFRP microstructure upon mechanical loading, tensile stress was applied to samples with cross-ply packing of fibers (0°, 90°) and (45°, −45°). It is shown that the brittle fracturing of reinforcing fibers is typical of CFRPs with fiber orientation (0°, 90°), and is accompanied by growing areas of stress concentration and a rise in of acoustic emission activity, with a subsequent increase in the signal energy and the formation of extensive interlaminar delamination. Acoustic emission shows a low level of activity for CFRP samples with fiber orientation (45°, −45°), which is accompanied by the formation of structural microdefects that are clearly visible in acoustic images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, K., Watanabe, N., and Iwahori, Y., Composites, Part B, 2011, vol. 42, p. 874.

    Article  Google Scholar 

  2. Vavrik, D., Jakubek, J., Jandejsek, I., et al., J. Instrum., 2015, vol. 10, p. C04012.

    Article  Google Scholar 

  3. Larin, A.A., Methods for evaluating the operational integrity of composite material products by computer tomography, Cand. Sci. (Eng.) Dissertation, Moscow MARTIT, 2013.

    Google Scholar 

  4. Grandin, R., Early-state damage detection, characterization, and evolution using high-resolution computed tomography, Ph.D. Thesis, Iowa Iowa State Univ., 2014.

    Google Scholar 

  5. Heuer, H., Schulze, M.H., and Meyendorf, N., in Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, Karbhari, V.M., Ed., Woodhead Publ., 2013, p. 33.

  6. He, Y., Tian, G., Pan, M., and Chen, D., Compos. Struct., 2014, vol. 109, p. 1.

    Article  Google Scholar 

  7. Kharkovsky, S. and Zoughi, R., IEEE Instrum. Meas. Mag., 2007, vol. 10, no. 2, p. 26.

    Article  Google Scholar 

  8. Yang, S.-H., Kim, K.-B., Oha, H.G., et al., NDT&E Int., 2013, vol. 57, p. 45.

    Article  Google Scholar 

  9. Klyuev, V.V., Ermolov, I.N., and Lange, Yu.V., Nerazrushayushchii kontrol’. Spravochnik v 8 tomakh (Nondestructive Testing. Handbook in 8 Volumes), vol. 3: Ul’trazvukovoi kontrol’ (Ultrasonic Testing), Moscow: Mashinostroenie, 2006, 2nd ed.

  10. Petronyuk, Yu.S., Morokov, E.S., and Levin, V.M., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 10, p. 1268.

    Article  Google Scholar 

  11. Park, B., An, Yu.-K., and Sohn, H., Compos. Sci. Technol., 2014, vol. 100, p. 10.

    Article  Google Scholar 

  12. Tittmann, B.R., Miyasaka, C., Guers, M., et al., in Non-Destructive Evaluation (NDE) of Polymer Matrix Composites, Karbhari, V., Ed., Woodhead Publ., 2013, p. 423.

  13. Zakutailov, K.V., Levin, V.M., and Petronyuk, Yu.S., Zavod. Lab., 2009, vol. 75, no. 8, p. 28.

    Google Scholar 

  14. Wooh, S.-C. and Daniel, I.M., Mater. Eval., 1994, vol. 10, p. 1199.

    Google Scholar 

  15. Wang, L., Ultrasonics, 1999, vol. 37, p. 283.

    Article  Google Scholar 

  16. Aymerich, F. and Meili, S., Compos. B, 2000, vol. 31, p. 1.

    Article  Google Scholar 

  17. Maslov, K., Kim, R.Y., Kinra, V.K., and Pagano, N.J., Compos. Sci. Technol., 2000, vol. 60, p. 2185.

    Article  Google Scholar 

  18. Wang, L. and Rokhlin, S.I., IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2002, vol. 49, no. 9, p. 1231.

    Article  Google Scholar 

  19. Petronyuk, Yu.S., Levin, V.M., Liu, S., et al., J. Mater. Sci. Eng. A, 2005, vol. 412, nos. 1–2, p. 93.

    Article  Google Scholar 

  20. Liu, S., Guo, E., Levin, V.M., et al., Ultrasonics, 2006, vol. 44, p. e1037.

    Article  Google Scholar 

  21. Liu, S., Guo, E., Levin, V.M., et al., Acoust. Imaging, 2004, vol. 27, p. 142.

    Google Scholar 

  22. Murashov, V.V., Aviats. Prom-st., 2011, vol. 3, p. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Petronyuk.

Additional information

Original Russian Text © Y.S. Petronyuk, V.M. Levin, E.S. Morokov, T.B. Ryzhova, A.V. Chernov, I.V. Gulevsky, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2016, Vol. 80, No. 10, pp. 1363–1368.

This article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petronyuk, Y.S., Levin, V.M., Morokov, E.S. et al. Studying the dynamics of microdefect growth in carbon fiber reinforced plastics under mechanical loading by means of ultrasonic microscopy. Bull. Russ. Acad. Sci. Phys. 80, 1224–1228 (2016). https://doi.org/10.3103/S1062873816100142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816100142

Navigation