Log in

Mechanical Activation Assisted Self-Propagating High-Temperature Synthesis of HfB2–HfC Composites

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The structure as well as the phase and granulometric compositions of the submicron-sized heterophase HfB2–34 at % HfC powders fabricated by mechanical activation assisted self-propagating high-temperature synthesis from (Hf + B + C) mixtures were studied. It was demonstrated that HfB2–HfC powders can be produced from (Hf + B + C) mixtures by mechanochemical synthesis in a planetary ball mill (centrifugal factor, 60 g) during more than 15 min. The SHS product with composition HfB2–34 at % HfC consisted of a combination of highly porous agglomerates sized 5–100 µm, which can be easily broken into composite HfB2–HfC particles sized 1–10 µm. Important that each composite particle of powder have a heterophase structure which consists of HfB2 grains sized 0.5–2.0 µm and equiaxial HfC grains sized 0.3–1 µm. Impurity oxygen content in the SHS products did not exceed 0.29 wt %. Milling of the SHS product allowed to obtain the HfB2–34 at % HfC powder characterized by the average particle size of 4 µm with heterophase submicron-sized microstructure and oxygen content of 0.72 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Golla, B.R., Mukhopadhyay, A., Basu, B., and Thimmappa, S.K., Review on ultra-high temperature boride ceramics, Prog. Mater. Sci., 2020, vol. 111, p.100651. https://doi.org/10.1016/j.pmatsci.2020.100651

    Article  CAS  Google Scholar 

  2. Hao, W., Ni, N., Guo, Y., Cai, H., Fan, X., Yao, Y., Zhao, X., and **ao, P., Strong and tough HfC-HfB2 solid-solution composites obtained by reactive sintering with a SiB6 additive, Ceram. Int., 2020, vol. 46, no. 10, pp. 16257–16265. https://doi.org/10.1016/j.ceramint.2020.03.182

    Article  CAS  Google Scholar 

  3. Yuan, Y., Liu, J.-X., and Zhang, G.-J., Effect of HfC and SiC on microstructure and mechanical properties of HfB2-based ceramics, Ceram. Int., 2016, vol. 42, no. 6, pp. 7861–7867. https://doi.org/10.1016/j.ceramint.2016.01.067

    Article  CAS  Google Scholar 

  4. Musa, C., Licheri, R., Orrù, R., Cao, G., Balbo, A., Zanotto, F., Mercatelli, L., and Sani, E., Optical characterization of hafnium boride and hafnium carbide-based ceramics for solar energy receivers, Sol. Energy, 2018, vol. 169, pp. 111–119. https://doi.org/10.1016/j.solener.2018.04.036

    Article  CAS  Google Scholar 

  5. Savino, R., Fumo, M.De.S., Silverstroni, L., and Sciti, D., Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials, J. Eur. Ceram. Soc., 2008, vol. 28, no. 9, pp. 1899–1907. https://doi.org/10.1016/j.jeurceramsoc.2007.11.021

    Article  CAS  Google Scholar 

  6. Li, Q., Meng, Z., **ao, B., Li, J., Liu, K., Yang, M., Zhang, S., Goto, T., and Tu, R., Mechanical, electrical and thermal properties of HfC-HfB2-SiC ternary eutectic composites prepared by arc melting, J. Eur. Ceram. Soc., 2021, vol. 41, no. 14, pp. 6943–6951. https://doi.org/10.1016/j.jeurceramsoc.2021.07.003

    Article  CAS  Google Scholar 

  7. Shahriari, M., Zakeri, M., Razavi, M., and Rahimipour, M.R., Magnesiothermic synthesis of HfB2–HfC–SiC nanocomposite by spark plasma technique, Ceram. Int., 2021, vol. 47, no. 2, pp. 2172–2179. https://doi.org/10.1016/j.ceramint.2020.09.055

    Article  CAS  Google Scholar 

  8. Shahriari, M., Zakeri, M., Razavi, M., and Rahimipour, M.R., Investigation on microstructure and mechanical properties of HfB2–SiC–HfC ternary system with different HfC content prepared by spark plasma sintering, Int. J. Refract. Met. Hard Mater, 2020, vol. 93, p. 105350. https://doi.org/10.1016/j.ijrmhm.2020.105350

    Article  CAS  Google Scholar 

  9. Licheri, R., Orrù, R., Musa, C., Locci, A.M., and Cao, G., Consolidation via spark plasma sintering of HfB2/SiC and HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis, J. Alloys Compd., 2009, vol. 478, pp. 572–578. https://doi.org/10.1016/j.jallcom.2008.11.092

    Article  CAS  Google Scholar 

  10. Ni, D.-W., Liu, J.-X., and Zhang, G.-J., Microstructure refinement and mechanical properties improvement of HfB2–SiC composites with the incorporation of HfC, J. Eur. Ceram. Soc., 2012, vol. 32, no. 10, pp. 2557–2563. https://doi.org/10.1016/j.jeurceramsoc.2012.02.017

    Article  CAS  Google Scholar 

  11. Huang, Z. and Wu, L., Phase Equilibria Diagrams of High Temperature Non-Oxide Ceramics, Springer Singapore, 2019, p. 166. https://doi.org/10.1007/978-981-13-0463-7

  12. Guo, W.-M., Yang, Z.-G., and Zhang, G.-J., Synthesis of submicrometer HfB2 powder and its densification, Mater. Lett., 2012, vol. 83, pp. 52–55. https://doi.org/10.1016/j.matlet.2012.06.012

    Article  CAS  Google Scholar 

  13. Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Kumar, S., Fotedar, R.K., and Suri, A.K., Investigations on synthesis of HfB2 and development of a new composite with TiSi2, Int. J. Refract. Met. Hard Mater, 2010, vol. 28, no. 2, pp. 201–210. https://doi.org/10.1016/j.ijrmhm.2009.09.005

    Article  CAS  Google Scholar 

  14. Ni, D.W., Zhang, G.J., Kan, Y.M., and Wang, P.L., Hot pressed HfB2 and HfB2–20 vol % SiC ceramics based on HfB2 powder synthesized by borothermal reduction of HfO2, Int. J. Appl. Ceram. Technol. 2010, vol. 7, no. 6, pp. 830–836. https://doi.org/10.1111/j.1744-7402.2009.02404.x

    Article  CAS  Google Scholar 

  15. Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. https://doi.org/10.1016/S0065-2377(08)60093-9

    Article  CAS  Google Scholar 

  16. Merzhanov, A.G., and Borovinskaya, I.P., Self-propagating high-temperature synthesis of refractory inorganic compounds, Dokl. Chem., 1972, vol. 204, no. 2, pp. 429–431.

    Google Scholar 

  17. Jalaly, M., Gotor, F.J., and Sayagués M.J., Self-propagating mechanosynthesis of HfB2 nanoparticles by a magnesiothermic reaction, J. Am. Ceram. Soc., 2018, vol. 101, pp. 1412–1419. https://doi.org/10.1111/jace.15297

    Article  CAS  Google Scholar 

  18. Chen, L., Gu, Y., Shi, L., Yang, Z., Ma, J., and Qian, Y., Synthesis and oxidation of nanocrystalline HfB2, J. Alloys Compd., 2004, vol. 368, nos. 1–2, pp. 353–356. https://doi.org/10.1016/j.jallcom.2003.08.086

    Article  CAS  Google Scholar 

  19. Akçamlı, N., Ağaoğulları, D., Balcı, Ö., Öveçoğlu, M.L., and Duman, İ., Synthesis of HfB2 powders by mechanically activated borothermal reduction of HfCl4, Ceram. Int., 2016, vol 42, no. 3, pp. 3797–3807. https://doi.org/10.1016/j.ceramint.2015.11.041

    Article  CAS  Google Scholar 

  20. Venugopal, S., Boakye, E.E., Paul, A., Keller, K., Mogilevsky, P., Vaidhyanathan, B., Binner, J.G.P., Katz, A., and Brown, P.M., Sol–gel synthesis and formation mechanism of ultra high temperature ceramic: HfB2, J. Am. Ceram., 2014, vol. 97, pp. 92–99. https://doi.org/10.1111/jace.12654

    Article  CAS  Google Scholar 

  21. Wayda, A.L., Schneemeyer, L.F., and Opila, R.L., Low-temperature deposition of zirconium and hafnium boride films by thermal decomposition of the metal borohydrides (M[BH4]4), Appl. Phys. Lett., 1988, vol. 53, p. 361. https://doi.org/10.1063/1.100603

    Article  CAS  Google Scholar 

  22. Kaptay, G. and Kuznetsov, S.A., Electrochemical synthesis of refractory borides from molten salts, Plasmas & Ions, 1999, vol. 2, no. 2, pp. 45–56. https://doi.org/10.1016/S1288-3255(00)87686-8

    Article  CAS  Google Scholar 

  23. Liu, J.X., Kan, Y.M., and Zhang, G.J., Synthesis of ultra-fine hafnium carbide powders and its pressureless sintering, J. Am. Ceram. Soc., 2010, vol. 93, pp. 980–986. https://doi.org/10.1111/j.1551-2916.2009.03531.x

    Article  CAS  Google Scholar 

  24. Matović, B., Babić, B., Bučevac, D., Čebela, M., Maksimović, V., Pantić, J., and Miljković, M., Synthesis and characterization of hafnium carbide fine powders, Ceram. Int., 2013, vol. 39, no. 1, pp. 719-723. https://doi.org/10.1016/j.ceramint.2012.06.083

    Article  CAS  Google Scholar 

  25. Ren, J., Zhang, Y., Li, J., Tian, S., Fei, T., and Li, H., Effects of deposition temperature and time on HfC nanowires synthesized by CVD on SiC-coated C/C composites, Ceram. Int., 2016, vol. 42, pp. 5623–5628. https://doi.org/10.1016/j.ceramint.2015.12.078

    Article  CAS  Google Scholar 

  26. Motojima, S. and Kawashima Y., Chemical vapour growth of HfC whiskers and their morphology, J. Mater. Sci., 1996, vol. 31, pp. 3697–3700. https://doi.org/10.1007/BF00352782

    Article  CAS  Google Scholar 

  27. Tian, S., Li, H., Zhang, Y., Liu, S., Fu, Y., Li, Y., and Qiang X., Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD, J. Alloys Compd., 2013, vol. 580, pp. 407–411. https://doi.org/10.1016/j.jallcom.2013.04.170

    Article  CAS  Google Scholar 

  28. Abdelkader, A.M. and Fray, D.J., Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification, J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4481–4487. https://doi.org/10.1016/j.jeurceramsoc.2012.07.010

    Article  CAS  Google Scholar 

  29. Yudin, S.N., Kasimtsev, A.V., Volodko, S.S., Alimov, I.A., Markova, G.V., Sviridova, T.A., Tabachkova, N.Yu., Buinevich, V.S., Nepapushev, A.A., and Mos-kovskikh, D.O., Low-temperature synthesis of ultra-high-temperature HfC and HfCN nanoparticles, Materialia, 2022, vol. 22, p. 101415. https://doi.org/10.1016/j.mtla.2022.101415

    Article  CAS  Google Scholar 

  30. Pierson H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications, Westwood: Noyes Publications, 1996.

    Google Scholar 

  31. Tekoğlu, E., Öveçoğlu, M.L., and Ağaoğulları, D., Effects of milling time and reductant content on the formation of HfC–HfB2 composite powders synthesized via a solid-state reaction route, Ceram. Int., 2021, vol. 47, no. 17, pp. 23851–23860. https://doi.org/10.1016/j.ceramint.2021.05.093

    Article  CAS  Google Scholar 

  32. Lee, S.J., Seong, Y.H., Baek, S., Kang, E.S., and Kim, D.K., Fabrication and properties of reactively hot pressed HfB2–HfC ultra-high temperature ceramics, J. Korean Ceram. Soc., 2010, vol. 47, no. 6, p. 534. https://doi.org/10.4191/kcers.2010.47.6.534

    Article  CAS  Google Scholar 

  33. Kurbatkina, V.V., Patsera, E.I., and Levashov, E.A., Combustion synthesis of ultra-high-temperature materials based on (Hf,Ta)B2. Pt. 1: The mechanisms of combustion and structure formation, Ceram. Int., 2019, vol. 45, no. 3, pp. 4067–4075. https://doi.org/10.1016/j.ceramint.2018.10.113

    Article  CAS  Google Scholar 

  34. Vorotilo, S., Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Kochetov, N.A., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB, Ceram. Int., 2019, vol. 45, no. 1, pp. 96–107. https://doi.org/10.1016/j.ceramint.2018.09.138

    Article  CAS  Google Scholar 

  35. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Timofeev, A.N., Self-propagating high-temperature synthesis of single-phase binary tantalum-hafnium carbide (Ta,Hf)C and its consolidation by hot pressing and spark plasma sintering, Ceram. Int., 2018, vol. 44, no. 4, pp. 4320–4329. https://doi.org/10.1016/j.ceramint.2017.12.024

    Article  CAS  Google Scholar 

  36. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Vorotilo, S., SHS processing and consolidation of Ta–Ti–C, Ta–Zr–C, and Ta–Hf–C carbides for ultra-high-temperatures application, Adv. Eng. Mater., 2018, vol. 20, p. 1701075. https://doi.org/10.1002/adem.201701075

    Article  CAS  Google Scholar 

  37. Kurbatkina, V.V. and Levashov, E.A., Mechanoactivation of SHS, Combustion of Heterogeneous Systems: Fundamentals and Applications for Materials Synthesis, Mukasyan, A.S. and Martirosyan, K.S., Eds., Kerala (India): Transworld Research Network, 2007, pp. 131–141.

    Google Scholar 

  38. Lyakhov, N.Z., Talako, T.L., and Grigor’eva, T.F., Vliyanie mekhanoaktivatsii na protsessy fazo- i strukturoobrazovaniya pri samorasprostranyayushchemsya vysokotemperatuurnom sinteze (Influence of Mechanical Alloying on Processes of Phase and Structure Formation during SHS), Novosibirsk: Parallel’, 2008.

Download references

Funding

This work was supported by the Ministry of Science and Education of the Russian Federation within the framework of the state assignment (project no. 0718-2020-0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Levashov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsev, A.A., Potanin, A.Y., Pogozhev, Y.S. et al. Mechanical Activation Assisted Self-Propagating High-Temperature Synthesis of HfB2–HfC Composites. Int. J Self-Propag. High-Temp. Synth. 32, 157–168 (2023). https://doi.org/10.3103/S1061386223020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386223020073

Keywords:

Navigation