Log in

Assisting Robotic Surgical Complexes for Minimally Invasive Operations

  • NEW TECHNOLOGIES IN MECHANICAL ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract—

The current state of robotic-assisted  complexes in minimally invasive surgery is considered. Three different manipulators for robotic surgery, which differ from well-known foreign analogues in a number of advantages, as well as a setting device, have been proposed. The prototypes of robots, the solution of the inverse problem of positions, and the problems of dynamics have been given. It has been proposed to use DC electric motors as drives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Minimally invasive surgery market-global industry analysis, size, share, growth, trends & forecast, 2013–2019, Albany, N.Y.: Transparency Market Research, 2014.

  2. The COlon cancer Laparoscopic or Open Resection Study Group, Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial, Lancet Oncol., 2005, vol. 6, no. 7, pp. 477–484.  https://doi.org/10.1016/S1470-2045(05)70221-7

  3. Veliev, E.I., Golubtsova, E.N., and Tomilov, A.A., Mini-invasive treatment of urinary incontinence after prostate cancer radical treatment, Onkourologiya, 2013, no. 4, pp. 37–42.

  4. Surgical Robotics: Systems Applications and Visions, Rosen, J., Hannaford, B., and Satava, R.M., Eds., Boston: Springer, 2011.  https://doi.org/10.1007/978-1-4419-1126-1

    Book  Google Scholar 

  5. Ficarra, V., Novara, G., Fracalanza, S., D’Elia, C., Secco, S., Iafrate, M., Cavalleri, S., and Artibani, W., A prospective, non-randomized trial comparing robot-assisted laparoscopic and retropubic radical prostatectomy in one European institution, BJU Int., 2009, vol. 104, no. 4, pp. 534–539.  https://doi.org/10.1111/j.1464-410X.2009.08419.x

    Article  Google Scholar 

  6. Corker, K., Lyman, J.H., and Sheredos, S., A preliminary evaluation of remote medical manipulators, Bull. Prosthet. Res., 1979, vol. 16, no. 2, pp. 107–134.

    Google Scholar 

  7. Alexander, A.D., Impacts of telemation on modern society, On Theory and Practice of Robots and Manipulators, International Centre for Mechanical Sciences, Berlin: Springer, 1972.  https://doi.org/10.1007/978-3-662-40393-8_9

    Book  Google Scholar 

  8. Alexander, A.D., Impacts of telemation on modern society, Symp. on Theory and Practice of Robots and Manipulators, 1973.

    Google Scholar 

  9. Takacs, A., Nagy, D.A., Rudas, I.J., and Haidegger, T., Origins of surgical robotics: from space to the operating room, Acta Polytech. Hung., 2016, vol. 13, no. 1, pp. 13–30.

    Google Scholar 

  10. Kwoh, Y.S., Hou, J., Jonckheere, E.A., and Hayati, S., A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Trans. Biomed. Eng., 1988, vol. 35, no. 2, pp. 153–160.  https://doi.org/10.1109/10.1354

    Article  Google Scholar 

  11. Sooriakumaran, P., Srivastava, A., Shariat, S.F., Stricker, P.D., Ahlering, T., Eden, C.G., Wiklund, P.N., Sanchez-Salas, R., Mottrie, A., Lee, D., Neal, D.E., Ghavamian, R., Nyirady, P., Nilsson, A., Carlsson, S., Xylinas, E., Lidl, W., Seitz, C., Schramek, P., Roehrborn, C., Cathelinaeau, X., Skarecky, D., Shaw, G., Warren, A., Delprado, W.J., Haynes, A.-M., Steyerberg, E., Roobol, M.J., and Tewari, A.K., A multinational, multiinstitutional study comparing positive surgical margin rates among 22 393 open, laparoscopic, and robot-assisted radical prostatectomy patients, Eur. Urol., 2014, vol. 66, no. 3, pp. 450–456.  https://doi.org/10.1016/j.eururo.2013.11.018

    Article  Google Scholar 

  12. Trinh, Q.-D., Sammon, J., Sun, M., Ravi, P., Ghani, K.R., Bianchi, M., Jeong, W., Shariat, S.F., Hansen, J., Schmitges, J., Jeldres, C., Rogers, C.G., Peabody, J.O., Montorsi, F., Menon, M., and Karakiewicz, P.I., Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: Results from the nationwide inpatient sample, Eur. Urol., 2012, vol. 61, no. 4, pp. 679–685.  https://doi.org/10.1016/j.eururo.2011.12.027

    Article  Google Scholar 

  13. Rassweiler, J.J., Autorino, R., Klein, J., Mottrie, A., Goezen, A.S., Stolzenburg, J.-U., Rha, K.H., Schurr, M., Kaouk, J., Patel, V., Dasgupta, P., and Liatsikos, E., Future of robotic surgery in urology, BJU Int., 2017, vol. 120, no. 6, pp. 822–841.  https://doi.org/10.1111/bju.13851

    Article  Google Scholar 

  14. Gidaro, S., Buscarini, M., Ruzi, E., Stark, M., and Labruzzo, A., Telelap Alf-X: A novel telesurgical system for the 21st century, Surg. Technol. Int., 2012, vol. 22, pp. 20–25.

    Google Scholar 

  15. Hagn, U., Konietschke, R., Tobergte, A., Nickl, M., Jörg, S., Kübler, B., Passig, G., Gröger, M., Fröhlich, F., Seibold, U., Le-Tien, L., Albu-Schäffer, A., Nothhelfer, A., Hacker, F., Grebenstein, M., and Hirzinger, G., DLR mirosurge: A versatile system for research in endoscopic telesurgery, Int. J. Comput. Assist. Radiol. Surg., 2010, vol. 5, pp. 183–189.  https://doi.org/10.1007/s11548-009-0372-4

    Article  Google Scholar 

  16. Thielmann, S., Seibold, U., Haslinger, R., Passig, G., Bahls, T., Jörg, S., Nickl, M., Nothhelfer, A., Hagn, U., and Hirzinger, G., MICA – A new generation of versatile instruments in robotic surgery, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, 2010, IEEE, 2010, pp. 871–878.  https://doi.org/10.1109/IROS.2010.5649984

  17. Rossitto, C., Guelialletti, S., Romano, F., Fiore, A., Coretti, S., Oradei, M., Ruggeri, M., Cicchetti, A., Marchetti, M., Fanfani, F., and Scambia, G., Use of robot-specific resources and operating room times: The case of Telelap Alf-X robotic hysterectomy, Int. J. Med. Rob., 2016, vol. 12, no. 4, pp. 613–619.  https://doi.org/10.1002/rcs.1724

    Article  Google Scholar 

  18. Fanfani, F., Restaino, S., Rossitto, C., Alletti, S.G., Constantini, B., Monterossi, G., Cappuccio, S., Perrone, E., and Scambia, G., Total Laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: A case control study, J. Min. Invasive Gynecol., 2016, vol. 23, no. 6, pp. 933–938.  https://doi.org/10.1016/j.jmig.2016.05.008

    Article  Google Scholar 

  19. Haber, G.-P., Autorino, R., Laydner, Y., Yang, B., White, M.A., Hillyer, S., Altunrende, F., Khanna, R., Spana, G., Wahib, I., Fareed, K., Stein, R.J., and Kaouk, J.H., Spider surgical system for urologic procedures with laparoendoscopic single-site surgery: From initial laboratory experience to first clinical application, Eur. Urol., 2012, vol. 61, no. 2, pp. 415–422.  https://doi.org/10.1016/j.eururo.2010.12.033

    Article  Google Scholar 

  20. Veliev, E.I., Ganiev, R.F., Glazunov, V.A., and Filippov, G.S., Parallel and sequential structures of manipulators in robotic surgery, Dokl. Phys., 2019, vol. 64, no. 3, pp. 106–109.  https://doi.org/10.1134/S102833581903008X

    Article  Google Scholar 

  21. Veliev, E.I., Ganiev, R.F., Glazunov, V.A., and Filippov, G.S., Promising minimally invasive robotic surgical complexes with parallel structure, Dokl. Phys., 2020, vol. 65, no. 11, pp. 409–412.  https://doi.org/10.1134/S1028335820110099

    Article  Google Scholar 

  22. Ganiev, R.F., Ganiev, S.R., Kasilov, V.P., and Pustovgar, A.P., Wave Technology in Mechanical Engineering: Industrial Applications of Wave and Oscillation Phenomena, Hoboken, N.J.: Wiley, 2015.

    Book  Google Scholar 

  23. Glazunov, V.A., Mekhanizmy parallel’noi struktury i ikh primenenie: robototekhnicheskie, tekhnologicheskie, meditsinskie, obuchayushchie sistemy (Mechanisms of Parallel Structure and Their Application: Robotic, Technological, Medical, and Educational Systems), Izhevsk: Izhevskii Inst. Komp’yut. Issled., 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Filippov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Avodkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veliev, E.I., Ganiev, R.F., Glazunov, V.A. et al. Assisting Robotic Surgical Complexes for Minimally Invasive Operations. J. Mach. Manuf. Reliab. 51, 261–270 (2022). https://doi.org/10.3103/S1052618822030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618822030128

Keywords:

Navigation