Log in

Spectral Content of Acoustic Signals of Artificial Sandstone Samples under Uniaxial Loading

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The study analyzed the spectra of acoustic signals obtained during uniaxial compression of artificial sandstone samples under continuous loading through the postultimate state up to failure. The authors attempt to reveal a shift towards lower values in the characteristic acoustic signal frequency as the load approaches the critical load state. The experiments were performed on a lever press in two modes: simple continuous loading and continuous loading with periodic impact on the sample by direct current. This was done in order to indicate the effect of electric current on the acoustic emission parameters. In both cases, when a load reached close-to-ultimate and postultimate states, the amplitude of the signals in the 10–20 kHz frequency range begins to significantly exceed the amplitude of the signals in frequency ranges above 20 kHz. At the final stage, immediately before the onset of an avalanche-like rise in acoustic emission activity, an increase in signals with frequencies in the 5–10 kHz range is also noted. Based on the identical behavior of the samples, the authors have concluded that the electric impact did not significantly affect the spectral acoustic signal characteristics. The shift of the frequency interval, which is accounted for the maximum RMS amplitudes of the acoustic signal, towards low frequencies may indicate either the formation of larger cracks or the appearance of additional cracks of a different mode than at lower loads (e.g., shear cracks). By itself, this phenomenon may indicate impending macrofailure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Aggelis, D.G., Classification of cracking mode in concrete by acoustic emission parameters, Mech. Res. Commun., 2011, vol. 38, no. 3, pp. 153–157. https://doi.org/10.1016/j.mechrescom.2011.03.007

    Article  Google Scholar 

  2. Avagimov, A.A., Zeigarnik, V.A., and Okunev V.I., Dynamics of energy exchange in model samples subjected to elastic and electromagnetic impacts, Izv., Phys. Solid Earth, 2011, vol. 47, p. 919. https://doi.org/10.1134/S1069351311100016

    Article  Google Scholar 

  3. Baddari, K., Frolov, A., Tourtchine, V., and Rahmoune, F., An integrated study of the dynamics of electromagnetic and acoustic regimes during failure of complex macrosystems using rock blocks, Rock Mech. Rock Eng., 2011, vol. 44, no. 3, pp. 269–280. https://doi.org/10.1007/s00603-010-0130-5

    Article  Google Scholar 

  4. Botvina, L.R., Damage evolution on different scale levels, Izv., Phys. Solid Earth, 2011, vol. 47, no. 10, p. 859. https://doi.org/10.1134/S106935131110003X

    Article  Google Scholar 

  5. Botvina, L.R. and Zavyalov, A.D., Interdisciplinary problems of fracture physics and mechanics: From metals to rocks. I. Damage localization and development, Russ. Metall., 2018, vol. 2018, no. 10, pp. 881–892. https://doi.org/10.1134/S0036029518100038

    Article  Google Scholar 

  6. Botvina, L.R. and Zavyalov, A.D., Interdisciplinary problems of fracture physics and mechanics: From metals to rocks. II. Fracture criteria, Russ. Metall., 2018, vol. 2018, no. 10, pp. 893–903. https://doi.org/10.1134/S003602951810004X

    Article  Google Scholar 

  7. Carpinteri, A., Lacidogna, G., Niccolini, G., and Puzzi, S., Critical defect size distribution in concrete structures detected by the acoustic emission technique, Meccanica, 2008, vol. 43, no. 3, pp. 349–363. https://doi.org/10.1007/s11012-007-9101-7

    Article  Google Scholar 

  8. Damaskinskaya, E.E. and Kadomtsev, A.G., Locating the spatial region of a future fracture nucleation based on analyzing energy distributions of acoustic emission signals, Izv., Phys. Solid Earth, 2015, vol. 51, no. 3, pp. 392–398. https://doi.org/10.1134/S1069351315030027

    Article  Google Scholar 

  9. Damaskinskaya, E.E., Panteleev, I.A., Frolov, D.I., Vasilenko, N.F., Features of the critical stage of fracture process of deformed heterogeneous materials, Geosist. Perekhodnykh Zon, 2018, vol. 2, no. 3, pp. 245–251. https://doi.org/10.30730/2541-8912.2018.2.3.245-251

    Article  Google Scholar 

  10. Damaskinskaya, E., Panteleev, I., and Gafurova, D., Defect structure evolution in deformed heterogeneous materials. acoustic emission and X-ray microtomography, AIP Conf. Proc., 2017, vol. 1909, no. 1, p. 020029. https://doi.org/10.1063/1.5013710

    Article  Google Scholar 

  11. Dann, D., Demikhova, A., Fursa, T., and Kuimova, M., Research of electrical response communication parameters on the pulse mechanical impact with the stress-strain state of concrete under uniaxial compression, IOP Conf. Ser.: Mater. Sci. Eng., 2014, vol. 66, p. 012036. https://doi.org/10.1088/1757-899X/66/1/012036

  12. Eftaxias, K. and Potirakis, S., Current challenges for pre-earthquake electromagnetic emissios: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process, Nonlinear Proc. Geophys., 2013, vol. 20, no. 5, pp. 771–792. https://doi.org/10.5194/npg-20-771-2013

    Article  Google Scholar 

  13. Fursa, T.V., Dann, D.D., Petrov, M.V., and Sokolovskii, A.N., Reinforced concrete fracture diagnostics under conditions of bending by parameters of the electric response to an impact action, Tech. Phys., 2019, vol. 64, no. 1, pp. 78–85. https://doi.org/10.1134/S1063784219010110

    Article  Google Scholar 

  14. Kas’yan, M.V., Robsman, G.N., and Nikogosyan, G.N., Changes in emission signal spectra during the development of cracks and distraction of rocks, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 4, pp. 826–830.

    Google Scholar 

  15. Klyuchkin, V.N., Novikov, V.A., Okunev, V.I., and Zeigarnik, V.A., Acoustic and electromagnetic emissions of rocks: insight from laboratory tests at press and shear machines, Environ. Earth Sci., 2022, vol. 81, no. 3, p. 64. https://doi.org/10.1007/s12665-022-10189-z

    Article  Google Scholar 

  16. Kuksenko, V., Tomilin, N., Damaskinskaya, E., and Lockner, D., A two-stage model of fracture of rocks, Pure Appl. Geophys., 1996, vol. 146, no. 2, pp. 253–263. https://doi.org/10.1007/BF00876492

    Article  Google Scholar 

  17. Kuksenko, V., Tomilin, N., and Chmel, A., The rock fracture experiment with drive control: A spatial aspect, Tectonophysics, 2007, vol. 431, nos. 1–4, pp. 123–129. https://doi.org/10.1016/j.tecto.2006.05.033

    Article  Google Scholar 

  18. Lei, X., Kusunose, K., Satoh, N., and Nishizawa, O., The hierarchical rupture process of a fault: An experimental study, Phys. Earth Planet. Inter., 2003, vol. 137, nos. 1–4, pp. 213–228. https://doi.org/10.1016/S0031-9201(03)00016-5

    Article  Google Scholar 

  19. Lennartz-Sassinek, S., Main, I., Zaiser, M., and Graham, C.C., Acceleration and localization of subcritical crack growth in a natural composite material, Phys. Rev. E, 2014, vol. 90, no. 5, p. 052401. https://doi.org/10.1103/PhysRevE.90.052401

    Article  Google Scholar 

  20. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A., and Sidorin, A., Quasi-static fault growth and shear fracture energy in granite, Nature, 1991, vol. 6313, pp. 39–42. https://doi.org/10.1038/350039a0

    Article  Google Scholar 

  21. Manzhikov, B.Ts., Bogomolov, L.M., Il’ichev, P.V., and Sychev, V.N., Structure of acoustic and electromagnetic emission signals on axial compression of rock specimens, Geol. Geofiz., 2001, vol. 42, no. 10, pp. 1690–1696.

    Google Scholar 

  22. Mpalaskas, A.C., Matikas, T.E., Hemelrijck, D.V., Papakitsos, G.S., and Aggelis, D.G., Acoustic emission monitoring of granite under bending and shear loading, Arch. Civil Mech. Eng., 2016, vol. 16, no. 3, pp. 313–324. https://doi.org/10.1016/j.acme.2016.01.006

    Article  Google Scholar 

  23. Niccolini, G., Bosia, F., Carpinteri, A., Lacidogna, G., Manuello, A., and Pugno, N., Self-similarity of waiting times in fracture systems, Phys. Rev. E, 2009, vol. 80, no. 2, p. 026101. https://doi.org/10.1103/PhysRevE.80.026101

    Article  Google Scholar 

  24. Ohnaka, M. and Mogi, K., Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure, J. Geophys. Res., 1982, vol. 87, no. B5, pp. 3873–3884. https://doi.org/10.1029/JB087iB05p03873

    Article  Google Scholar 

  25. Ohno, K. and Ohtsu, M., Crack classification in concrete based on acoustic emission, Constr. Build. Mater., 2010, vol. 24, no. 12, pp. 2339–2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004

    Article  Google Scholar 

  26. Onuma, K., Muto, J., Nagahama, H., and Otsuki, K., Electric potential changes associated with nucleation of stick-slip of simulated gouges, Tectonophysics, 2011, vol. 502, nos. 3–4, pp. 308–314. https://doi.org/10.1016/j.tecto.2011.01.018

    Article  Google Scholar 

  27. Ostapchuk, A.A., Pavlov, D.V., Markov, V.K., and Krasheninnikov, A.V., Study of acoustic emission signals during fracture shear deformation, Acoust. Phys., 2016, vol. 62, no. 4, pp. 505–513. https://doi.org/10.1134/S1063771016040138

    Article  Google Scholar 

  28. Panfilov, A., The results of experimental studies of VLF–ULF electromagnetic emission by rock samples due to mechanical action, Nat. Hazards Earth Syst. Sci., 2014, vol. 14, no. 6, pp. 1383–1389. https://doi.org/10.5194/nhess-14-1383-2014

    Article  Google Scholar 

  29. Panteleev, I.A., Mubassarova, V.A., Damaskinskaya, E.E., Bogomolov, L.M., and Naimark, O.B., Effect of weak electric field on spatial-temporal dynamics of acoustic emission at uniaxial compression of granite, Triggernye effekty v geosistemakh. Materialy tret’ego Vseross. seminara-soveshchaniya (Trigger Effects in Geosystems: Proc. 3rd All-Russ. Workshop-Meeting), Adushkin, V.V. and Kocharyan, G.G, Eds., Moscow: GEOS, 2015.

  30. Panteleev, I., Bayandin, Yu., and Naimark, O., Coherent change of multifractal properties of continuous acoustic emission at failure of heterogeneous materials, AIP Conf. Proc., 2017, vol. 1909, no. 1, p. 020169. https://doi.org/10.1063/1.5013850

    Article  Google Scholar 

  31. Ponomarev, A.V., Zavyalov, A.D., Smirnov, V.B., and Lockner, D.A., Physical modeling of the formation and evolution of seismically active fault zones, Tectonophysics, 1997, vol. 277, nos. 1–3, pp. 57–81. https://doi.org/10.1016/S0040-1951(97)00078-4

    Article  Google Scholar 

  32. Shikhova, N.M., Patonin, A.V., Ponomarev, A.V., and Smirnov, V.B., Variations in ultrasonic signal spectra for triaxial testing of rock samples, Izv., Phys. Solid Earth, 2022, vol. 58, no. 4, pp. 591–602. https://doi.org/10.1134/S1069351322040103

    Article  Google Scholar 

  33. Shkuratnik, V.L., Novikov, E.A., Voznesenskii, A.S., and Vinnikov, V.A., Termostimulirovannaya akusticheskaya emissiya v geomaterialakh (Thermostibulated Acoustic Emission in Geomaterials), Moscow: Gornaya Kniga, 2015.

  34. Smirnov, V.B. and Ponomarev, A.V., Seismic regime relaxation properties from in situ and laboratory data, Izv., Phys. Solid Earth, 2004, vol. 40, no. 10, pp. 807–816.

    Google Scholar 

  35. Smirnov, V.B. and Ponomarev, A.V., Fizika perekhodnykh rezhimov seismichnosti (Physics of Transient Modes of Seismicity), Moscow: Ross. Akad. Nauk, 2020.

  36. Smirnov, V.B., Ponomarev, A.V., Benard, P., and Patonin, A.V., Regularities in transient modes in the seismic process according to the laboratory and natural modeling, Izv., Phys. Solid Earth, 2010, vol. 46, no. 2, pp. 104–135. https://doi.org/10.1134/S1069351310020023

    Article  Google Scholar 

  37. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestniki (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  38. Sobolev, G.A. and Tyupkin, Yu.S., Analysis of energy release process during main rupture formulation in laboratory studies of rock fracture and before strong earthquakes, Izv., Phys. Solid Earth, 2000, vol. 36, no. 2, pp. 138–149.

    Google Scholar 

  39. Stergiopoulos, C., Stavrakas, I., Hloupis, G., Triantis, D., and Vallianatos, F., Electrical and acoustical emissions in cement mortar beams subjected to mechanical loading up to fracture, Eng. Failure Anal., 2013, vol. 35, pp. 454–461. https://doi.org/10.1016/j.engfailanal.2013.04.015

    Article  Google Scholar 

  40. Thompson, B.D., Young, R.P., and Lockner, D.A., Premonitory acoustic emission and stick-slip in natural and smooth-faulted westerly granite, J. Geophys. Res., 2009, vol. 114, no. B2, p. B02205. https://doi.org/10.1029/2008JB005753

    Article  Google Scholar 

  41. Triantis, D. and Kourkoulis, S.K., An alternative approach for representing the data provided by the acoustic emission technique, Rock Mech. Rock Eng., 2018, vol. 51, no. 8, pp. 2433–2438. https://doi.org/10.1007/s00603-018-1494-1

    Article  Google Scholar 

  42. Varotsos, P., Sarlis, N., and Skordas, E., Long-range correlations in the electric signals that precede rupture, Phys. Rev. E, 2002, vol. 66, no. 1, p. 011902. https://doi.org/10.1103/PhysRevE.66.011902

    Article  Google Scholar 

  43. Yuyama, S., Li, Z., Ito, Y., and Arazoe, M., Quantitative analysis of fracture process in RC column foundation by moment tensor analysis of acoustic emission, Construct. Build. Mater., 1999, vol. 13, nos. 1–2, pp. 87–97. https://doi.org/10.1016/S0950-0618(99)00011-2

    Article  Google Scholar 

  44. Zavyalov, A.D., From the kinetic theory of strength and fracture concentration criterion to the seismogenic fracture density and earthquake forecasting, Phys. Solid State, 2005, vol. 47, no. 6, pp. 1034–1041. https://doi.org/10.1134/1.1946852

    Article  Google Scholar 

  45. Zhang, J.Z. and Zhou, X.P., Forecasting catastrophic rupture in brittle rocks using precursory ae time series, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 8, p. e2019JB019276. https://doi.org/10.1029/2019JB019276

  46. Zhang, J., Peng, W., Liu, F., Zhang, H., and Li, Z., Monitoring rock failure processes using the Hilbert–Huang transform of acoustic emission signals, Rock Mech. Rock Eng., 2016, vol. 49, no. 2, pp. 427–442. https://doi.org/10.1007/s00603-015-0755-5

    Article  Google Scholar 

  47. Zhou, J.W., Xu, W.Y., and Yang, X.G., A microcrack damage model for brittle rocks under uniaxial compression, Mech. Res. Commun., 2010, vol. 37, no. 4, pp. 399–405. https://doi.org/10.1016/j.mechrescom.2010.05.001

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors consider it their pleasant duty to thank I.Ya. Dichter for help in preparing the article for publication, as well as to the referees for their helpful remarks and comments.

Funding

The study was carried out within the State Assignment of the Joint Institute for High Temperatures of the Russian Academy of Sciences (topic no. 122031400717-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zeigarnik.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeigarnik, V.A., Kliuchkin, V.N. & Okunev, V.I. Spectral Content of Acoustic Signals of Artificial Sandstone Samples under Uniaxial Loading. Seism. Instr. 58 (Suppl 2), S291–S301 (2022). https://doi.org/10.3103/S0747923922080151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922080151

Keywords:

Navigation