Log in

Registration Capabilities of Russian Island-Based Seismic Stations: Case Study of the Gakkel Ridge Monitoring

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

This paper presents the capabilities of the Franz Josef Land, Omega, and Severnaya Zemlya island-based seismic stations for seismicity monitoring in the Arctic region. We first analyze how seismicity parameters in the European sector of the Arctic region change over time; we then compare the spectral power density of microseismic noise for positioned seismic stations sites to Peterson models; and finally we analyze MLrepr variations and the accuracy of earthquakes location. To assess registration capabilities, we examined the monitoring results obtained for the Gakkel Ridge, which is characterized by ultra-slow spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Turuntaev, S.B., Tekhnogennaya seismichnost’ − indutsirovannaya i triggernaya (Technogenic Seismicity: Induced and Triggered), Moscow: Inst. Din. Geosfer Ross. Akad. Nauk, 2015.

  2. Antonovskaya, G.N., Seismic monitoring of the state of technogenic objects and their sites, including the Far North, Doctoral Dissertation in Technical Sciences, 2018.

  3. Asming, V.E. and Fedorov, A.V., Possibility of using a single three-component station automatic detector-locator for detailed seismological observations, Seism. Instrum., 2015, vol. 51, no. 3, pp. 201–208. https://doi.org/10.3103/S0747923915030032

    Article  Google Scholar 

  4. Asming, V. and Prokudina, A., System for automatic detection and location of seismic events for arbitrary seismic station configuration NSDL, 35th General Assembly of the European Seismological Commission, 2016, Art. No. 373.

  5. Burmin, V.Yu., Inverse Kinematic Problems of Seismology: New Approaches and Results, Saarbrücken: Palmarium Academic Publishing, 2012.

    Google Scholar 

  6. Cochran, J.R., Seamount volcanism along the Gakkel Ridge, Arctic Ocean, Geophys. J. Int., 2008, vol. 174, pp. 1153–1173.

    Article  Google Scholar 

  7. Danilov, A.V., Antonovskaya, G.N., and Konechnaya, Ya.V., Specific features of seismic stations installation in the Arctic Region of Russia, Seism. Instrum., 2014, vol. 50, no. 3, pp. 206–220.

    Article  Google Scholar 

  8. Demuth, A., Ottemöller, L., and Keers, H., Ambient noise levels and detection threshold in Norway, J. Seismol., 2016, vol. 20, no. 3, pp. 889–904.

    Article  Google Scholar 

  9. DSYS Company, CMG-6TD velocimeter. https://dsys.ru/shop/po-kategorijam/seismicheskoe-oborudovanie/velosimetry/cmg-6td.html. Accessed August 27, 2018.

  10. Dubinin, E.P., Kokhan, A.V., and Sushchevskaya, N.M., Tectonics and magmatism of ultraslow spreading ridges, Geotectonics, 2013, vol. 47, no. 3, pp. 131–155.

    Article  Google Scholar 

  11. Emanov, A.F., Emanov, A.A., Fateev, A.V., Shevkunova, E.V., Vorona, U.Yu., and Serezhnikov, N.A., Seismic impact of industrial blasts in western Siberia and induced seismicity, Seism. Instrum., 2019, vol. 55, no. 4, pp. 410–426. https://doi.org/10.3103/S0747923919040066

    Article  Google Scholar 

  12. Fedorov, A.V., Asming, V.E., Jevtjugina, Z.A., and Prokudina, A.V., Automated seismic monitoring system for the European Arctic, Seism. Instrum., 2018, vol. 55, no. 1, pp. 17–23. https://doi.org/10.3103/S0747923919010067

    Article  Google Scholar 

  13. Gabsatarova, I.P., Making the procedure of calculation of local magnitude a routine practice for branches of the Geophysical Service of the Russian Academy of Sciences, in Sovremennye metody obrabotki i interpretatsii seismologicheskikh dannykh: Materialy Mezhdunarodnoi seismologicheskoi shkoly, posvyashchennoi 100-letiyu otkrytiya seismicheskikh stantsii “Pulkovo” i “Ekaterinburg” (Contemporary Problems of Processing and Interpretation of Seismological Data: Proceedings of the International Seismological Workshop on the 100th Anniversary of the Pulkovo and Yekaterinburg Seismic Stations), Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk, 2006, pp. 50–54.

  14. Gutenberg, B. and Richter, C., Magnitude and energy of earthquakes, Ann. Geofis., 1956, vol. 1, no. 9, pp. 1–15.

    Google Scholar 

  15. International Seismological Centre. http://www.isc.ac.uk/. Accessed August 27, 2018.

  16. International Seismological Centre, ISC Bulletin. http://www.isc.ac.uk/iscbulletin/search/bulletin/. Accessed August 27, 2018.

  17. IRIS, Meta Data Aggregator. http://www.iris.washington.edu/mda. Accessed August 27, 2018.

  18. Konechnaya, Ya.V., Study of natural seismicity peculiarities in the western sector of the Arctic from the seismic data on Barents Sea region, Extended Abstract of Candidate’s Dissertation in Technical Sciences, Arkhangelsk, 2015.

  19. Kokhan, A.V., Tectonics and geodynamics of ultraslow spreading ridges, Extended Abstract of Candidate’s Dissertation in Geology Mineralogy, Moscow, 2013.

  20. Laverov, N.P., Dmitrievskii, A.N., and Bogoyavlenskii, V.I., Fundamental aspects of development of oil and gas resources on the Russian Arctic shelf, Arkt. Ekol. Ekon., 2011, no. 1, pp. 26–37.

  21. Mel’nikov, N.N., Kalashnik, A.I., and Kalashnik, N.A., Technogenic geodynamic processes when develo** oil and gas fields on the Barents Sea shelf, Vestn. Murmansk. Gos. Tekh. Univ., 2009, vol. 12, no. 4, pp. 601–608.

  22. Michael, P.J., Langmuir, C.H., Dick, H.J.B., Snow, J.E., Goldsteink, S.L., Graham, D.W., Lehnert, K., Kurras, G., Jokat, W., Muhe, R., and Edmonds, H.N., Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 2003, vol. 423, no. 26, pp. 956–962.

    Article  Google Scholar 

  23. Morozov, A.N. and Vaganova, N.V., The travel times of regional P and S waves for spreading ridges in the European Arctic, J. Volcanol. Seismol., 2017, vol. 11, no. 2, pp. 156–163. https://doi.org/10.1134/S0742046317020051

    Article  Google Scholar 

  24. Peterson, J., Observations and Modeling of Seismic Background Noise,USGS Open-File Rep.93-322, Albuquerque, New Mexico, 1993.

    Book  Google Scholar 

  25. Radziminovich, N.A. and Ochkovskaya, M.G., Distinguishing the aftershock and swarm earthquake sequences in the Baikal Rift Zone, Geodin.Tektonofiz., 2013, vol. 4, no. 2, pp. 169–186.

    Article  Google Scholar 

  26. Rogozhin, E.A., Antonovskaya, G.N., and Kapustyan, N.K., Current state and prospects of the development of an Arctic seismic monitoring system, Seism. Instrum., 2016, vol. 52, no. 2, pp. 144–153.

    Article  Google Scholar 

  27. Rogozhin, E.A., Antonovskaya, G.N., Kapustian, N.K., and Fedorenko, I.V., Features of seismicity of the Euro-Arctic region, Dokl. Earth Sci., 2016, vol. 467, no. 2, pp. 389–392. https://doi.org/10.1134/S1028334X16040140

    Article  Google Scholar 

  28. Roth, E.H., Hildebrand, J.A., Wiggins, S.M., and Ross, D., Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009, J. Acoust. Soc. Am., 2012, vol. 131, no. 1, pp. 104–110.

    Article  Google Scholar 

  29. Schlindwein, V., Teleseismic earthquake swarms at ultraslow spreading ridges: Indicator for dyke intrusions?, Geophys. J. Int., 2012, vol. 190, pp. 442–456.

    Article  Google Scholar 

  30. Schlindwein, V., Muller, C., and Jokat, W., Microseismicity of the ultraslow-spreading Gakkel ridge, Arctic Ocean: A pilot study, Geophys. J. Int., 2007, vol. 169, pp. 100–112.

    Article  Google Scholar 

  31. Zaraiskaya, Yu.A., Segmentation and seismicity of the ultraslow Knipovich and Gakkel mid-ocean ridges, Geotectonics, 2017, vol. 51, no. 2, pp. 163–175. https://doi.org/10.1134/S0016852117010095

    Article  Google Scholar 

  32. Federal Center for Integrated Arctic Research of the Russian Academy of Sciences, Unique research facility of the Arkhangelsk Seismic Network. http://fciarctic.ru/index.php?page=geoss. Accessed April 5, 2019.

Download references

Funding

This work was partially supported by state assignment project no. AAAA-A18-118012490072-7 for the Laboratory of Seismology and by the Russian Foundation for Basic Research (grant no. 18-05-70018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Danilov.

Ethics declarations

The authors declare no conflict of interests.

Additional information

Translated by N. Astafiev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonovskaya, G.N., Kapustian, N.K., Konechnaya, Y.V. et al. Registration Capabilities of Russian Island-Based Seismic Stations: Case Study of the Gakkel Ridge Monitoring. Seism. Instr. 56, 33–45 (2020). https://doi.org/10.3103/S0747923920010028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920010028

Keywords:

Navigation