Log in

Fault Recognition and Reconfiguration for Three-Phase Five-level Cascaded H-bridge Multilevel Inverter

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper presents the fault recognition and reconfiguration technique for three-phase five-level cascaded H-bridge multilevel inverter operation. The multilevel inverter operation is carried out by using space vector modulation technique. Open switch fault is very frequent in multilevel inverter, which is located using fuzzy logic whereas the fault reconfiguration is done by adding one auxiliary inverter module with the main multilevel inverter which operates in a faulty condition and regulates the output voltage. The operation of auxiliary inverter module is according to the switching state provided which is based on a fault that occurs in a particular switch. In this method continuous operation of the main multilevel inverter is possible even in the fault condition with only one or two voltage level missed at the output. The continuous operation of multilevel inverter with reduced THD is achieved without using filter which is affirmed by MATLAB® simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

References

  1. L. Franquelo, J. Rodriguez, J. Leon, S. Kouro, R. Portillo, M. Prats, "The age of multilevel converters arrives," IEEE Ind. Electron. Mag., v.2, n.2, p.28 (2008). DOI: https://doi.org/10.1109/MIE.2008.923519.

    Article  Google Scholar 

  2. J. Rodriguez, J.-S. Lai, F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., v.49, n.4, p.724 (2002). DOI: https://doi.org/10.1109/TIE.2002.801052.

    Article  Google Scholar 

  3. R. R. Kumar, "Comparison of PWM techniques and inverter performance," IOSR J. Electr. Electron. Eng., v.4, n.1, p.18 (2013). DOI: https://doi.org/10.9790/1676-0411822.

    Article  Google Scholar 

  4. K. Deepa, P. A. Kumar, V. S. Krishna, P. N. K. Rao, A. Mounika, D. Medhini, "A study of comparative analysis of different PWM techniques," in 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon) (IEEE, 2017). DOI: https://doi.org/10.1109/SmartTechCon.2017.8358548.

    Chapter  Google Scholar 

  5. K. V. Kumar, P. A. Michael, J. P. John, S. S. Kumar, "Simulation and comparison of SPWM and SVPWM control for three phase inverter," ARPN J. Eng. Appl. Sci., v.5, n.7, p.61 (2010).

    Google Scholar 

  6. H. Hu, W. Yao, Z. Lu, "Design and implementation of three-level space vector PWM IP core for FPGAs," IEEE Trans. Power Electron., v.22, n.6, p.2234 (2007). DOI: https://doi.org/10.1109/TPEL.2007.909296.

    Article  Google Scholar 

  7. I. Ahmed, V. B. Borghate, A. Matsa, P. M. Meshram, H. M. Suryawanshi, M. A. Chaudhari, "Simplified space vector modulation techniques for multilevel inverters," IEEE Trans. Power Electron., v.31, n.12, p.8483 (2016). DOI: https://doi.org/10.1109/TPEL.2016.2520078.

    Article  Google Scholar 

  8. J.-S. Hu, J.-N. Lin, H.-C. Chen, "A discontinuous space vector PWM algorithm in abc reference frame for multilevel three-phase cascaded H-bridge voltage source inverters," IEEE Trans. Ind. Electron., v.64, n.11, p.8406 (2017). DOI: https://doi.org/10.1109/TIE.2017.2703675.

    Article  Google Scholar 

  9. R. R. Krishna, K. Gopakumar, M. Boby, A. K. Yadav, L. G. Franquelo, S. S. Williamson, "Multilevel 24-sided polygonal voltage-space-vector structure generation for an IM drive using a single DC source," IEEE Trans. Ind. Electron., v.66, n.2, p.1023 (2019). DOI: https://doi.org/10.1109/TIE.2018.2831189.

    Article  Google Scholar 

  10. D. Miljković, "Fault detection methods: A literature survey," in 2011 Proceedings of the 34th International Convention MIPRO (IEEE, Opatija, 2011). URI: https://ieeexplore.ieee.org/document/5967153.

    Google Scholar 

  11. F. Asghar, M. Talha, S. H. Kim, "Comparative study of three fault diagnostic methods for three phase inverter with induction motor," Int. J. Fuzzy Log. Intell. Syst., v.17, n.4, p.245 (2017). DOI: https://doi.org/10.5391/IJFIS.2017.17.4.245.

    Article  Google Scholar 

  12. F. Asghar, M. Talha, S. H. Kim, "Neural network based fault detection and diagnosis system for three-phase inverter in variable speed drive with induction motor," J. Control Sci. Eng., v.2016, p.1 (2016). DOI: https://doi.org/10.1155/2016/1286318.

    Article  MATH  Google Scholar 

  13. H. Liu, P. C. Loh, F. Blaabjerg, "Sub-module short circuit fault diagnosis in modular multilevel converter based on wavelet transform and adaptive neuro fuzzy inference system," Electr. Power Components Syst., v.43, n.8–10, p.1080 (2015). DOI: https://doi.org/10.1080/15325008.2015.1022668.

    Article  Google Scholar 

  14. S. Boukadida, S. Gdaim, A. Mtiba, "Sensor fault detection and isolation based on artificial neural networks and fuzzy logic applicated on induction motor for electrical vehicle," Int. J. Power Electron. Drive Syst., v.8, n.2, p.601 (2017). DOI: https://doi.org/10.11591/ijpeds.v8.i2.pp601-611.

    Article  Google Scholar 

  15. M. Thirumarimurugan, N. Bagyalakshmi, P. Paarkavi, "Comparison of fault detection and isolation methods: A review," in 2016 10th International Conference on Intelligent Systems and Control (ISCO) (IEEE, 2016). DOI: https://doi.org/10.1109/ISCO.2016.7726957.

    Chapter  Google Scholar 

  16. P. Lezana, J. Pou, T. A. Meynard, J. Rodriguez, S. Ceballos, F. Richardeau, "Survey on fault operation on multilevel inverters," IEEE Trans. Ind. Electron., v.57, n.7, p.2207 (2010). DOI: https://doi.org/10.1109/TIE.2009.2032194.

    Article  Google Scholar 

  17. B. Lu, S. K. Sharma, "A literature review of IGBT fault diagnostic and protection methods for power inverters," IEEE Trans. Ind. Appl., v.45, n.5, p.1770 (2009). DOI: https://doi.org/10.1109/TIA.2009.2027535.

    Article  Google Scholar 

  18. M. A. Rodriguez-Blanco, A. Vazquez-Perez, L. Hernandez-Gonzalez, V. Golikov, J. Aguayo-Alquicira, M. May-Alarcon, "Fault detection for IGBT using adaptive thresholds during the turn-on transient," IEEE Trans. Ind. Electron., v.62, n.3, p.1975 (2015). DOI: https://doi.org/10.1109/TIE.2014.2364154.

    Article  Google Scholar 

  19. U.-M. Choi, F. Blaabjerg, K.-B. Lee, "Study and handling methods of power IGBT module failures in power electronic converter systems," IEEE Trans. Power Electron., v.30, n.5, p.2517 (2015). DOI: https://doi.org/10.1109/TPEL.2014.2373390.

    Article  Google Scholar 

  20. Z. Wang, X. Shi, L. M. Tolbert, F. Wang, B. J. Blalock, "A di/dt feedback-based active gate driver for smart switching and fast overcurrent protection of IGBT modules," IEEE Trans. Power Electron., v.29, n.7, p.3720 (2014). DOI: https://doi.org/10.1109/TPEL.2013.2278794.

    Article  Google Scholar 

  21. W. Zhang, D. Xu, P. N. Enjeti, H. Li, J. T. Hawke, H. S. Krishnamoorthy, "Survey on fault-tolerant techniques for power electronic converters," IEEE Trans. Power Electron., v.29, n.12, p.6319 (2014). DOI: https://doi.org/10.1109/TPEL.2014.2304561.

    Article  Google Scholar 

  22. W. Song, A. Q. Huang, "Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM," IEEE Trans. Ind. Electron., v.57, n.8, p.2700 (2010). DOI: https://doi.org/10.1109/TIE.2009.2036019.

    Article  Google Scholar 

  23. M. Aleenejad, H. Iman‐Eini, S. Farhangi, "Modified space vector modulation for fault‐tolerant operation of multilevel cascaded H‐bridge inverters," IET Power Electron., v.6, n.4, p.742 (2013). DOI: https://doi.org/10.1049/iet-pel.2012.0543.

    Article  Google Scholar 

  24. L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura, "Fault-tolerant operation of a battery-energy-storage system based on a multilevel cascade PWM converter with star configuration," IEEE Trans. Power Electron., v.25, n.9, p.2386 (2010). DOI: https://doi.org/10.1109/TPEL.2010.2047407.

    Article  Google Scholar 

  25. H. Salimian, H. Iman-Eini, "Fault-tolerant operation of three-phase cascaded H-bridge converters using an auxiliary module," IEEE Trans. Ind. Electron., v.64, n.2, p.1018 (2017). DOI: https://doi.org/10.1109/TIE.2016.2613983.

    Article  Google Scholar 

  26. S. Ouni, M. R. Zolghadri, M. Khodabandeh, M. Shahbazi, J. Rodriguez, H. Oraee, P. Lezana, A. U. Schmeisser, "Improvement of post-fault performance of a cascaded H-bridge multilevel inverter," IEEE Trans. Ind. Electron., v.64, n.4, p.2779 (2017). DOI: https://doi.org/10.1109/TIE.2016.2632058.

    Article  Google Scholar 

  27. M. M. Haji-Esmaeili, M. Naseri, H. Khoun-Jahan, M. Abapour, "Fault-tolerant structure for cascaded H-bridge multilevel inverter and reliability evaluation," IET Power Electron., v.10, n.1, p.59 (2017). DOI: https://doi.org/10.1049/iet-pel.2015.1025.

    Article  Google Scholar 

  28. H. K. Jahan, F. Panahandeh, M. Abapour, S. Tohidi, "Reconfigurable multilevel inverter with fault-tolerant ability," IEEE Trans. Power Electron., v.33, n.9, p.7880 (2018). DOI: https://doi.org/10.1109/TPEL.2017.2773611.

    Article  Google Scholar 

  29. A. A. Stonier, B. Lehman, "An intelligent-based fault-tolerant system for solar-fed cascaded multilevel inverters," IEEE Trans. Energy Convers., v.33, n.3, p.1047 (2018). DOI: https://doi.org/10.1109/TEC.2017.2786299.

    Article  Google Scholar 

  30. S. Rahman, M. Meraj, A. Iqbal, L. Ben-Brahim, R. Alammari, H. Abu-Rub, "Fault tolerant single-phase capacitor start capacitor run induction motor powered with cascaded multilevel quasi impedance source inverter," J. Eng., v.2019, n.17, p.4036 (2019). DOI: https://doi.org/10.1049/joe.2018.8042.

    Article  Google Scholar 

  31. H. Iman-Eini†, S. Farhangi, J.-L. Schanen, M. Khakbazan-Fard, "A fault-tolerant control strategy for cascaded H-bridge multilevel rectifiers," J. Power Electron., v.10, n.1, p.34 (2010). URI: http://koreascience.or.kr/article/JAKO201012368302236.pdf.

    Article  Google Scholar 

  32. M. Aleenejad, S. Jafarishiadeh, H. Mahmoudi, R. Ahmadi, "Reduced number of auxiliary H-bridge power cells for post-fault operation of three phase cascaded H-bridge inverter," IET Power Electron., v.12, n.11, p.2923 (2019). DOI: https://doi.org/10.1049/iet-pel.2018.5073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanu Prasad.

Ethics declarations

ADDITIONAL INFORMATION

T. Prasad, S. Pattnaik

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S002134702206005X with DOI: https://doi.org/10.20535/S002134702206005X

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 6, pp. 377-392, June, 2022 https://doi.org/10.20535/S002134702206005X .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, T., Pattnaik, S. Fault Recognition and Reconfiguration for Three-Phase Five-level Cascaded H-bridge Multilevel Inverter. Radioelectron.Commun.Syst. 65, 317–329 (2022). https://doi.org/10.3103/S073527272206005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272206005X

Navigation