Log in

Use of NIRS in Soil Properties Evaluation Related to Soil Salinity and Sodicity in Colombian Caribbean Coast

  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

The banana sector contributes to 3% of the Colombia total exports, becoming the most important crop in the north of the country, benefiting more than 2.5 million families. Banana production is concentrated on the Colombian Caribbean coast where most of 90% of the soils are affected to some degree of salt affection in soils. This study was carried out in the municipality of Zona Bananera, Department of Magdalena (Colombia) elsewhere eleven geomorphological units were delimited through geomorphological surveying with geopedological methods. Given the high costs of implementing salt monitoring and management programs in the field, the implementation of Near Infrared spectroscopy (NIR) and image analysis are proposed as an alternative for map** soils salt affectation. Geostatistical methods, traditional soil laboratory methods and multispectral analysis of 697 soil samples were analyzing using machine learning and spectral models. The Orthogonal Partial Linear Square- Discriminant Analyses (OPLS-DA), Principal Component Regression (PCR), Partial Linear Square (PLS–PLSR), Least Absolute Shrinkage and Selection Operator (LASSO) were implemented. Soil cartographies for SAS were designed in areas under banana cultivation, determining the affectation degree. The results obtained showed that 45.1% of the soils are affected by salts, with R2 0.76 and RMS 0.15 for the applied of supervised models. OPLS-DA had a better performance being the high above sea level was the principal covariable to improve the model accuracy. LASSO and PLS were useful to Mg+2 and K+ with RMSE 0.92 and 0.34 and R2 of 0.37 and 0.44, while Saitsky&Golay filter improved the predictions model for pH and Ca+2. The use of combined techniques of geopedology, geostatistics and spectroscopy were efficient, practical and cheap methodologies for evaluate soil properties associate to SAS in the stablished banana crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Agudelo, L., La industria bananera y el inicio de los conflictos sociales del siglo XX. Credencial historia, Rev. Credenical, 2011, no. 258.

  2. Bastidas-obando, E., Caracterización espectral y mineralógica de los suelos del valle del río Cauca por espectroscopía visible e infrarroja (400-2.500 nm). Agron. Colomb., 2010, vol. 28, no. 2.

  3. Bernal, G., Caracterización geomorfológica de la llanura deltaica del rio Magdalena con énfasis en el sistema lagunar de la Ciénaga Grande de Santa Marta, Colombia, Bull. Mar. Coastal Res., 2016, vol. 25, no. 1. https://doi.org/10.25268/bimc.invemar.1996.25.0.369

  4. Bilgili, A.V., Cullu, M.A., van Es, H., et al., The use of hyperspectral visible and near infrared reflectance spectroscopy for the characterization of salt-affected soils in the Harran plain, Turkey, Arid Land Res. Manag., 2011, vol. 25, no. 1. https://doi.org/10.1080/15324982.2010.528153

  5. Cabral Barreto, A., Ferreira Neto, M., Pereira de Oliveira, R., Francismar de Medeiros, J., and da Silva Sá, F.V., Comparative analysis of spectral indexes for soil salinity map** in irrigated areas in a semi-arid region, Brazil, J. Arid Environ., 2023, vol. 209, p. 104888. https://doi.org/10.1016/j.jaridenv.2022.104888

  6. Camacho-Tamayo, J.H., Forero-Cabrera, N.M., Ramírez-López, L., et al., Near-infrared spectroscopic assessment of soil texture in an oxisol of the eastern plains of Colombia, Colomb. For., 2017, vol. 20, no. 1. https://doi.org/10.14483/udistrital.jour.colomb.for.2017.1.a01

  7. Cambou, A., Barthès, B.G., Moulin, P., et al., Prediction of soil carbon and nitrogen contents using visible and near infrared diffuse reflectance spectroscopy in varying salt-affected soils in Sine Saloum (Senegal), Catena, 2022, vol. 212, no. 6943, p. 106075. https://doi.org/10.1016/j.catena.2022.106075

  8. Damodaran, T., Mishra, V.K., Sharma, D.K., et al., Management of sub-soil sodicity for sustainable banana production in sodic soil – an approach, Int. J. Current Res., 2013, vol. 5, no. 7, pp. 1930–1934.

    CAS  Google Scholar 

  9. De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D.L., The Mahalanobis distance, Chemom. Intell. Lab. Syst., 2000, vol. 50, no. 1. https://doi.org/10.1016/S0169-7439(99)00047-7

  10. Delgadillo-Duran, D.A., Vargas-García, C.A., Varón-Ramírez, V.M., et al., Vis–NIR spectroscopy and machine learning methods to diagnose chemical properties in Colombian sugarcane soils, Geoderma Reg., 2022, vol. 31, p. e00588. https://doi.org/10.1016/j.geodrs.2022.e00588

  11. Dos Santos, C.R.C., Matsunaga, A.T., Costa, L.R.R., et al., Spatial variability of soil fertility under agroforestry system and native forest in eastern Amazonia, Brazil, Biosci. J., 2023, vol. 39, p. e39015. https://doi.org/10.14393/BJ-v39n0a2023-62830

  12. El-Fadel, M., Deeb, T., Alameddine, I., et al., Impact of groundwater salinity on agricultural productivity with climate change implications, Int. J. Sustainable Dev. Plann., 2018, vol. 13, no. 03. https://doi.org/10.2495/SDP-V13-N3-445-456

  13. Eriksson, L., Byrrne, T., Johansson, E., et al., Multi- and Megavariate Data Analysis. Basic Principles and Applications, 3rd ed., MKS UMetrics, 2013.

  14. ESA, Sentinel-2 MSI User Guide, European Space Agency (ESA), 2012. https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi .

  15. Espinal, L.S., Apuntes ecológicos, in Departamento de Ciencias de la Tierra, Universidad Nacional de Colombia, Sede Medellín, Medellín: Editorial Lealon, 1991.

    Google Scholar 

  16. Fernández-Buces, N., Siebe, C., Cram, S., et al., Map** soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico, J. Arid Environ., 2006, vol. 65, no. 4. https://doi.org/10.1016/j.jaridenv.2005.08.005

  17. Ferreira, R., Teixeira, G., and Peternelli, L.A., Kennard-Stone method outperforms the Random Sampling in the selection of calibration samples in SNPs and NIR data, Ciencia Rural, 2022, vol. 52, no. 5. https://doi.org/10.1590/0103-8478cr20201072

  18. foss4g., GRASS GIS for remote sensing data processing and analysis, 2022. https://grass.osgeo.org/learn/tutorials/ .

  19. Gómez, J. and Montes, N.E., Mapa Geológico de Colombia 2020, Escala 1:1 000 000, Bogotá: Servicio Geológico Colombiano, 2022. https://www2.sgc.gov.co/MGC/Documents/MGC_2020/mgc2020.pdf .

    Google Scholar 

  20. Haq, Y., Shahbaz, M., Asif, H.M.S., et al., Spatial map** of soil salinity using machine learning and remote sensing in Kot Addu, Pakistan, Sustainability, 2023, vol. 15, no. 17. https://doi.org/10.3390/su151712943

  21. He, Y., Huang, M., García, A., et al., Prediction of soil macronutrients content using near-infrared spectroscopy, Comput. Electron. Agric., 2007, vol. 58, no. 2. https://doi.org/10.1016/j.compag.2007.03.011

  22. Herczeg, A.L., Torgersen, T., Chivas, A.R., et al., Geochemistry of ground waters from the Great Artesian Basin, Australia, J. Hydrol., 1991, vol. 126, no. 3-4. https://doi.org/10.1016/0022-1694(91)90158-E

  23. Hou, J. and Rusuli, Y., Estimation of soil salt content in the Bosten Lake watershed, Northwest China based on a support vector machine model and optimal spectral indices, PLOS ONE, 2023, vol. 18, no. 2. https://doi.org/10.1371/journal.pone.0273738

  24. IDEAM, Mapa nacional de degradación de suelos por salinización, Bogotá: IDEAM, Grupo de Suelos y Tierras, Subdirección de Ecosistemas e Información Ambiental, 2017.

    Google Scholar 

  25. IGAC, Estudio General de Suelos y Zonificación de Tierras: departamento del Magdalena, escala 1:100.000, Bogotá: Imprenta Nacional de Colombia, 2009.

    Google Scholar 

  26. Jia, P., Zhang, J., He, W., et al., Combination of hyperspectral and machine learning to invert soil electrical conductivity, Remote Sens., 2022, vol. 14, no. 11. https://doi.org/10.3390/rs14112602

  27. **, X., Du, J., Liu, H., et al., Remote estimation of soil organic matter content in the Sanjiang Plain, Northeast China: The optimal band algorithm versus the GRA-ANN model, Agric. Forest Meteorol., 2016, vol. 218–219, pp. 250–260. https://doi.org/10.1016/j.agrformet.2015.12.062

    Article  Google Scholar 

  28. Laga, I. and Kleiber, W., The modified Matérn process, Stat, 2017, vol. 6, pp. 241–247. https://doi.org/10.1002/sta4.152

    Article  Google Scholar 

  29. Li, J., Pu, L., Zhu, M., et al., Evolution of soil properties following reclamation in coastal areas: A review, Geoderma, 2014, vol. 226-227, no. 1, pp. 130–139. https://doi.org/10.1016/j.geoderma.2014.02.003

    Article  CAS  Google Scholar 

  30. Londoño Ardila, J.H., Suelos afectados por sales en la Zona Bananera de Santa Marta, 2016. http://www.bdigital.unal.edu.co/55737/1/71394585.pdf. http://www.bdigital.unal.edu.co/55737/.

  31. LR, Sector bananero genera 50.000 empleos según el presidente de ASBAMA, in Agronegocios, Bogotá: Editorial la República, 2023.

    Google Scholar 

  32. Ma, Y., Chen, H., Zhao, G., et al., Spectral index fusion for salinized soil salinity inversion using Sentinel-2A and UAV images in a coastal area, IEEE Access, 2020, vo. 8, pp. 159595–159608. https://doi.org/10.1109/ACCESS.2020.3020325

  33. Maertens, M., De Lannoy, G.J.M., Vincent, F., et al., Spatial patterns of soil salinity in the central Argentinean Dry Chaco, Anthropocene, 2022, vol. 37, no. 124, p. 100322. https://doi.org/10.1016/j.ancene.2022.100322

  34. Mahajan, G.R., Da, B., Gaikwad, B., et al., Monitoring properties of the salt-affected soils by multivariate analysis of the visible and near-infrared hyperspectral data, Catena, 2021, vol. 198, p. 105041. https://doi.org/10.1016/j.catena.2020.105041

  35. Mevik, B.H., Wehrens, R., Liland, K.H., et al., Rpackage: pls, Partial Least Squares and Principal Component Regression. R Package Version 2, 2016.

  36. Minasny, B. and McBratney, A.B., A conditioned Latin hypercube method for sampling in the presence of ancillary information, Comput. Geosci., 2006, vol. 32, no. 9. https://doi.org/10.1016/j.cageo.2005.12.009

  37. Mohamed, E.S., Saleh, A.M., Belal, A.B., et al., Application of near-infrared reflectance for quantitative assessment of soil properties, Egypt. J. Remote Sens. Space Sci., 2018, vol. 21, no. 1. https://doi.org/10.1016/j.ejrs.2017.02.001

  38. Mouazen, A.M., Kuang, B., De Baerdemaeker, J., et al., Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy, Geoderma, 2010, vol. 158, no. 1-2. https://doi.org/10.1016/j.geoderma.2010.03.001

  39. Olivares Campos, B.O., Evaluation of the Incidence of Banana Wilt and its Relationship with Soil Properties, in Banana Production in Venezuela. The Latin American Studies Book Series. Cham: Springer, 2023, pp. 95-117. https://doi.org/10.1007/978-3-031-34475-6_4

  40. Omuto, C.T., Vargas, R.R., El Mobarak, A.M., et al., Map** of Salt-Affected Soils: Technical Manual, Rome: FAOK, 2020. https://doi.org/10.4060/ca9215en

    Book  Google Scholar 

  41. Panagopoulos, T., Jesus, J., Antunes, M.D.C., et al., Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce, Europ. J. Agron., 2006, vol. 24, no. 1. https://doi.org/10.1016/j.eja.2005.03.001

  42. Pessoa, L.G.M., Freire, M.B.G., Green, C.H.M., et al., Assessment of soil salinity status under different land-use conditions in the semiarid region of Northeastern Brazil, Ecol. Indic., 2021, vol. 141, no. 6, p. 109139. https://doi.org/10.1016/j.ecolind.2022.109139

  43. Pla, I. and Sentis, I., Advances in the prognosis of soil sodicity under dryland irrigated conditions, Int. Soil Water Conserv. Res., 2014, vol. 2, no. 4. https://doi.org/10.1016/S2095-6339(15)30058-7

  44. Ramirez-Lopez, L., Behrens, T., Schmidt, K., et al., Distance and similarity-search metrics for use with soil vis–NIR spectra, Geoderma, 2013, vol. 199, pp. 43–53. https://doi.org/10.1016/j.geoderma.2012.08.035

    Article  CAS  Google Scholar 

  45. Ravi, I. and Vaganan, M.M., Abiotic stress tolerance in banana, in Abiotic Stress Physiology of Horticultural Crop, Springer India, 2016. https://doi.org/10.1007/978-81-322-2725-0_12

    Book  Google Scholar 

  46. Rincon-Rodriguez, C.A., Loaiza-Usuga, J.C., and Rubiano-Sanabria, Y., Preliminary study of Salt affected soils in the Zona Bananera, Magdalena (Colombia), Proc. Global Symp. on Salt Afected Soils, Oct. 20–22, 2021, Global Soil Partnership, FAO, 2021. https://www.fao.org/fileadmin/user_upload/GSP/GSAS21/069.pdf .

  47. RStudio Team, RStudio: Integrated Development for R. RStudio, Boston, MA: PBC, 2020. http://www.rstudio.com/ .

  48. Savitzky, A. and Golay, M.J.E., Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem., 1964, vol. 36, no. 8. https://doi.org/10.1021/ac60214a047

  49. Soil Science Division Staff., Soil survey manual, USDA Handbook 18, Washington, D.C., C. Ditzler, K.Scheffe, and H.C. Monger (eds.), Government Printing Office, 2017.

  50. Strauss, T. and von Maltitz, M.J., Generalizing Ward’s method for use with Manhattan distances, PLOS ONE, 2017, vol. 12, no. 1. https://doi.org/10.1371/journal.pone.0168288

  51. Suleymanov, A., Gabbasova, I., Abakumov, E., et al., Soil salinity assessment from satellite data in the Trans-Ural steppe zone (Southern Ural, Russia), Soil Sci. Annu., 2017, vol. 72, no. 1. https://doi.org/10.37501/soilsa/132233

  52. Taleisnik, E. and Lavado, R.S., Saline and Alkaline Soils in Latin America, Springer Nature, 2021.

    Book  Google Scholar 

  53. Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. B (Methodol.), 1996, vol. 58, no. 1. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

  54. USSLS, Diagnosis and Improvement of saline and alkali soils, Soil and Water Conservation Research Branch Agricultural Research Service Agriculture, USDA, U. S. Washington 25, D. C: Government Printing Office Handbook No. 60, 1954.

  55. Velasquez, E., Lavelle, P., Barrios, E., et al., Evaluating soil quality in tropical agroecosystems of Colombia using NIRS, Soil Biol. Biochem., 2005, vol. 37, no. 5, pp. 889–898. https://doi.org/10.1016/j.soilbio.2004.09.009

    Article  CAS  Google Scholar 

  56. Wackernagel, H., Ordinary kriging, in Multivariate Geostatistics, Berlin, Heidelberg: Springer, 1995. https://doi.org/10.1007/978-3-662-03098-1_11

    Book  Google Scholar 

  57. Wold, S. and Sjöström, M., SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy, Am. Chem. Soc., 1977, pp. 243–282. https://doi.org/10.1021/bk-1977-0052.ch012

  58. Zeaiter, M. and Rutledge, D., Preprocessing methods, in Comprehensive Chemometrics; Chemical and Biochemical Data Analysis, Elsevier, 2009. https://doi.org/10.1016/B978-044452701-1.00074-0

    Book  Google Scholar 

  59. Zhou, Y., Chen, S., Hu, B., et al., Global soil salinity prediction by Open Soil Vis-NIR Spectral Library, Remote Sens., 2022, vol. 14, no. 21. https://doi.org/10.3390/rs14215627

  60. Zontov, Y.V., Rodionova, O.Y., Kucheryavskiy, S.V., et al., PLS-DA – a MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis, Chemom. Intell. Lab. Syst., 2020, vol. 203, p. 104064. https://doi.org/10.1016/j.chemolab.2020.104064

  61. Zovko, M., Romić, D., Colombo, C., et al., A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia, Geoderma, 2018, vol. 332, pp. 60–72. https://doi.org/10.1016/j.geoderma.2018.07.005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to the collaboration of Colombian Caribbean region bananas companies Tecbaco, Banasan, Agrobanacaribe, Uniban, Cobafrio, Comulbanano, and the small farmers for allowing us to access inside the plantations. Also, the Spectroscopy and Soil Sciences laboratory at the Universidad Nacional de Colombia, Campus Bogota and Campus Medellin. The authors wish to acknowledge of diligent technical work performed in the fieldwork by the engineers Andrés Barreto Rivadeneira, Sleyder Castro, Diomara Suarez, and Luis Gutierrez. Specifically acknowledge the dedication and professionalism of the professor Orlando Ruiz Villadiego in the chemometrics analysis and Dr Melisa Lis Gutierrez for her continuous support and advice.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Rincón.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón, C.A., Loaiza-Usuga, J.C., Rubiano, Y. et al. Use of NIRS in Soil Properties Evaluation Related to Soil Salinity and Sodicity in Colombian Caribbean Coast. Moscow Univ. Soil Sci. Bull. 78, 439–450 (2023). https://doi.org/10.3103/S0147687423050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147687423050046

Keywords:

Navigation