Log in

The Sensitivity of Multipotent Mesenchymal Stromal Cells to Short-Term Hypoxic Stress In Vitro Depends on the Efficiency of Homotypic Communication through Gap Junctions

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Gap junctions (GJ) provide metabolic cooperation between cells through the direct exchange of cytoplasmic components. The authors analyzed the effect of short-term hypoxic stress on the efficiency of communication through the GJs in cultured multipotent mesenchymal stromal cells (MSCs) and characterized the sensitivity of MSCs to short-term hypoxic stress depending on the GJ function. Mitotically inactive MSCs were used in the experiments, in which the GJs were blocked with a specific inhibitor: carbenoxolone. The MSCs were continuously cultured at 20% O2. Further, MSCs with blocked and working GJs were subjected to hypoxic stress (0.1%, 24 h). The efficiency of GJ communication was attenuated under hypoxic stress. The combined action of GJ inhibition and hypoxic stress was accompanied by an increase in ROS level as compared to the MSCs after hypoxic stress only. MSCs with blocked GJs were less sensitive to short-term hypoxic stress in comparison with MSCs integrated into the common network through working GJs. This was manifested in attenuation of hypoxia-induced angiogenic activity of MSCs. The angiogenic effects of conditioned medium from the MSCs with blocked GJs were almost two times less, which seems to be related to differences in the angiogenic mediators’ profiles: VEGF level decreased and FGF-2 level increased, while the monocyte chemoattractant protein 3 (MCP-3) level was unchanged. Thus, a decrease in the efficiency of direct MSCs–MSCs communication had a negative effect on mostly requested MSC activity, the ability to induce angiogenesis. It is concluded that blocking of GJ communication in MSCs is a negative event that impairs the coordination of MSCs’ response to microenvironmental factors, in particular hypoxic stress, and reduces their functional plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Andreeva, E.R. and Buravkova, L.B., Paracrine activity of multipotent mesenchymal stromal cells and its modulation in hypoxia, Hum. Physiol., 2013, vol. 39, no. 3, pp. 315–322. https://doi.org/10.1134/s0362119713030043

    Article  CAS  Google Scholar 

  2. Murray, I.R. and Péault, B., Q&A: Mesenchymal stem cells—Where do they come from and is it important?, BMC Biol., 2015, vol. 13, no. 1, p. 99. https://doi.org/10.1186/s12915-015-0212-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caplan, A.I., Mesenchymal stem cells: Time to change the name!, Stem Cells Transl. Med., 2017, vol. 6, no. 6, pp. 1445–1451. https://doi.org/10.1002/sctm.17-0051

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tan, L., Liu, X., Dou, H., and Hou, Ya., Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment—Specific factors involved in the regulation of MSC plasticity, Genes Dis., 2020, vol. 9, no. 2, pp. 296–309. https://doi.org/10.1016/j.gendis.2020.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buravkova, L.B., Andreeva, E.R., and Grigoriev, A.I., The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions, Hum. Physiol., 2012, vol. 38, pp. 444–452. https://doi.org/10.1134/S0362119712040032

    Article  CAS  Google Scholar 

  6. Buravkova, L.B., Andreeva, E.R., Gogvadze, V., and Zhivotovsky, B., Mesenchymal stem cells and hypoxia: Where are we?, Mitochondrion, 2014, vol. 19, pp. 105–112. https://doi.org/10.1016/j.mito.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Pulido-Escribano, V., Torrecillas-Baena, B., Camacho-Cardenosa, M., Dorado, G., Gálvez-Moreno, M.Á., and Casado-Díaz, A., Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles, World J. Stem Cells, 2022, vol. 14, no. 7, pp. 453–472. https://doi.org/10.4252/wjsc.v14.i7.453

    Article  PubMed  PubMed Central  Google Scholar 

  8. Antebi, B., Rodriguez, L.A., Walker, K.P., Asher, A.M., Kamucheka, R.M., Alvarado, L., Mohammadipoor, A., and Cancio, L.C., Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells, Stem Cell Res. Ther., 2018, vol. 9, no. 1, p. 265. https://doi.org/10.1186/s13287-018-1007-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishiuchi, N., Nakashima, A., Doi, S., Yoshida, K., Maeda, S., Kanai, R., Yamada, Yu., Ike, T., Doi, T., Kato, Yu., and Masaki, T., Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats, Stem Cell Res. Ther., 2020, vol. 11, no. 1, p. 130. https://doi.org/10.1186/s13287-020-01642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Udartseva, O.O., Lobanova, M.V., Andreeva, E.R., Buravkov, S.V., Ogneva, I.V., and Buravkova, L.B., Acute hypoxic stress affects migration machinery of tissue O2-adapted adipose stromal cells, Stem Cells Int., 2016, vol. 2016, p. 7260562. https://doi.org/10.1155/2016/7260562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ezdakova, M.I., Matveeva, D.K., Buravkov, S.V., and Andreeva, E.R., The role of gap junctions in endothelial–stromal cell interactions, Hum. Physiol., 2022, vol. 47, no. 3, pp. 352–362. https://doi.org/10.1134/s036211972103004x

    Article  Google Scholar 

  12. Dorshkind, K., Green, L., Godwin, A., and Fletcher, W.H., Connexin-43-type gap junctions mediate communication between bone marrow stromal cells, Blood, 1993, vol. 82, no. 1, pp. 38–45. https://doi.org/10.1182/blood.v82.1.38.bloodjournal82138

    Article  CAS  PubMed  Google Scholar 

  13. Chanson, M., Derouette, J., Roth, I., Foglia, B., Scerri, I., Dudez, T., and Kwak, B.R., Gap junctional communication in tissue inflammation and repair, Biochim. Biophys. Acta, Biomembr., 2005, vol. 1711, no. 2, pp. 197–207. https://doi.org/10.1016/j.bbamem.2004.10.005

    Article  CAS  Google Scholar 

  14. Danon, A., Zeevi-Levin, N., Pinkovich, D.Y., Michaeli, T., Berkovich, A., Flugelman, M., Eldar, Y.C., Rosen, M.R., and Binah, O., Hypoxia causes connexin 43 internalization in neonatal rat ventricular myocytes, Gen. Physiol. Biophys., 2010, vol. 29, no. 3, pp. 222–233. https://doi.org/10.4149/gpb_2010_03_222

    Article  CAS  PubMed  Google Scholar 

  15. Wu, X., Huang, W., Luo, G., and Alain, L.A., Hypoxia induces connexin 43 dysregulation by modulating matrix metalloproteinases via MAPK signaling, Mol. Cell. Biochem., 2013, vol. 384, nos. 1–2, pp. 155–162. https://doi.org/10.1007/s11010-013-1793-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mcnair, A.J., Wilson, K.S., Martin, P.E., Welsh, D.J., and Dempsie, Yv., Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia, Pulm. Circ., 2020, vol. 10, no. 3, p. 2045894020937134. https://doi.org/10.1177/2045894020937134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glass, B.J., Hu, R.G., Phillips, A.R.J., and Becker, D.L., The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion, Biol. Open, 2015, vol. 4, no. 11, pp. 1473–1480. https://doi.org/10.1242/bio.013573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ezdakova, M.I., Zornikova, K.V., Buravkov, S.V., and Andreeva, E.R., Functional activity of non-proliferating mesenchymal stromal cells cultured at different densities, Bull. Exp. Biol. Med., 2021, vol. 170, no. 4, pp. 537–543. https://doi.org/10.1007/s10517-021-05102-w

    Article  CAS  PubMed  Google Scholar 

  19. Talbot, J., Brion, R., Lamora, A., Mullard, M., Morice, S., Heymann, D., and Verrecchia, F., Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts, J. Cell. Physiol., 2018, vol. 233, no. 2, pp. 946–957. https://doi.org/10.1002/jcp.25938

    Article  CAS  PubMed  Google Scholar 

  20. Udartseva, O.O., Zhidkova, O.V., Ezdakova, M.I., Ogneva, I.V., Andreeva, E.R., Buravkova, L.B., and Gollnick, S.O., Low-dose photodynamic therapy promotes angiogenic potential and increases immunogenicity of human mesenchymal stromal cells, J. Photochem. Photobiol. B: Biol., 2019, vol. 199, p. 111596. https://doi.org/10.1016/j.jphotobiol.2019.111596

    Article  CAS  Google Scholar 

  21. Andreeva, E., Andrianova, I., Rylova, J., Gornostaeva, A., Bobyleva, P., and Buravkova, L., Proinflammatory interleukins’ production by adipose tissue-derived mesenchymal stromal cells: The impact of cell culture conditions and cell-to-cell interaction, Cell Biochem. Funct., 2015, vol. 33, no. 6, pp. 385–392. https://doi.org/10.1002/cbf.3125

    Article  CAS  Google Scholar 

  22. Wiesner, M., Berberich, O., Hoefner, C., Blunk, T., and Bauer-kreisel, P., Gap junctional intercellular communication in adipose-derived stromal/stem cells is cell density-dependent and positively impacts adipogenic differentiation, J. Cell. Physiol., 2018, vol. 233, no. 4, pp. 3315–3329. https://doi.org/10.1002/jcp.26178

    Article  CAS  PubMed  Google Scholar 

  23. Paquet, J., Deschepper, M., Moya, A., Logeart-Avramoglou, D., Boisson-Vidal, C., and Petite, H., Oxygen tension regulates human mesenchymal stem cell paracrine functions, Stem Cells Transl. Med., 2015, vol. 4, no. 7, pp. 809–821. https://doi.org/10.5966/sctm.2014-0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fuhrmann, D.C. and Brüne, B., Mitochondrial composition and function under the control of hypoxia, Redox Biol., 2017, vol. 12, pp. 208–215. https://doi.org/10.1016/j.redox.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Presley, A.D., Fuller, K.M., and Arriaga, E.A., Mito Tracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. B, 2003, vol. 793, no. 1, pp. 141–150. https://doi.org/10.1016/s1570-0232(03)00371-4

    Article  CAS  Google Scholar 

  26. Cottet-rousselle, C., Ronot, X., Leverve, X., and Mayol, J., Cytometric assessment of mitochondria using fluorescent probes, Cytometry Part A, 2011, vol. 79A, no. 6, pp. 405–425. https://doi.org/10.1002/cyto.a.21061

    Article  CAS  Google Scholar 

  27. Ezdakova, M.I., Matveeva, D.K., Buravkov, S.V., and Andreeva, E.R., The role of gap junctions in endothelial–stromal cell interactions, Hum. Physiol., 2021, vol. 47, no. 3, pp. 352–362. https://doi.org/10.1134/s036211972103004x

    Article  Google Scholar 

  28. Zhu, Yi., Gap junction-dependent and -independent functions of Connexin43 in biology, Biology, 2022, vol. 11, no. 2, p. 283. https://doi.org/10.3390/biology11020283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zamorano, M., Castillo, R.L., Beltran, J.F., Herrera, L., Farias, J.A., Antileo, C., Aguilar-Gallardo, C., Pessoa, A., Calle, Yo., and Farias, J.G., Tackling ischemic reperfusion injury with the aid of stem cells and tissue engineering, Front. Physiol., 2021, vol. 12, p. 705256. https://doi.org/10.3389/fphys.2021.705256

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang, Ya., Lee, E.H., and Yang, Z., Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application, Tissue Eng. Part B: Rev., 2022, vol. 28, no. 5, pp. 966–977. https://doi.org/10.1089/ten.teb.2021.0145

    Article  CAS  PubMed  Google Scholar 

  31. Blebea, J., Vu, J., Assadnia, S., Mclaughlin, P.J., Atnip, R.G., and Zagon, I.S., Differential effects of vascular growth factors on arterial and venous angiogenesis, J. Vasc. Surg., 2002, vol. 35, no. 3, pp. 532–538. https://doi.org/10.1067/mva.2002.120042

    Article  PubMed  Google Scholar 

  32. Yu, J., Wu, J., Bagchi, I.C., Bagchi, M.K., Sidell, N., and Taylor, R.N., Disruption of gap junctions reduces biomarkers of decidualization and angiogenesis and increases inflammatory mediators in human endometrial stromal cell cultures, Mol. Cell. Endocrinol., 2011, vol. 344, nos. 1–2, pp. 25–34. https://doi.org/10.1016/j.mce.2011.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suarez, S. and Ballmer-Hofer, K., VEGF transiently disrupts gap junctional communication in endothelial cells, J. Cell Sci., 2001, vol. 114, no. 6, pp. 1229–1235. https://doi.org/10.1242/jcs.114.6.1229

    Article  CAS  PubMed  Google Scholar 

  34. Muto, T., Tien, T., Kim, D., Sarthy, V.P., and Roy, S., High glucose alters Cx43 expression and gap junction intercellular communication in retinal Müller cells: Promotes Müller cell and pericyte apoptosis, Investigative Opthalmology Visual Sci., 2014, vol. 55, no. 7, p. 4327. https://doi.org/10.1167/iovs.14-14606

    Article  CAS  Google Scholar 

  35. Duffy, H.S., John, G.R., Lee, S.C., Brosnan, C.F., and Spray, D.C., Reciprocal regulation of the junctional proteins claudin-1 and connexin43 by interleukin-1β in primary human fetal astrocytes, J. Neurosci., 2000, vol. 20, no. 23, p. RC114. https://doi.org/10.1523/jneurosci.20-23-j0004.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out with financial support from the Russian Foundation for Basic Research (project no. 20-015-00075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Andreeva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezdakova, M.I., Matveeva, D.K., Andrianova, I.V. et al. The Sensitivity of Multipotent Mesenchymal Stromal Cells to Short-Term Hypoxic Stress In Vitro Depends on the Efficiency of Homotypic Communication through Gap Junctions. Moscow Univ. Biol.Sci. Bull. 78, 180–189 (2023). https://doi.org/10.3103/S0096392523700086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392523700086

Keywords:

Navigation