Log in

The Molecular and Cellular Mechanisms of Heart Pacemaker Development in Vertebrates

  • REVIEW
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract–

A small group of specialized myocardial cells constitutes a natural dominant heart pacemaker in the so-called sinoatrial node (SAN). The SAN determines proper heart automaticity throughout life in animals, including humans. The heart pacemaker is characterized by specific histological organization and unique pattern of gene expression, defining the electrophysiological phenotype of constituent cardiomyocytes. The SAN development starts very early in embryogenesis and continues until the late prenatal period. The clarification of the origin of the heart pacemaker and molecular mechanisms controlling its development promotes the elaboration of bio-artificial pacemakers and understanding of causes for many cardiovascular diseases, including hereditary, developmental or acquired arrhythmias. The investigation of SAN embryogenesis facilitates the solution of reprogramming problem for cardiomyocytes or somatic cells designed for cellular therapy of cardiovascular diseases and reversion of pathological heart remodeling. To date, significant progress has been achieved in the field of identifying genetic and molecular pathways that control the pacemaker cells' nature and govern morphological and functional maturation of the dominant cardiac pacemaker during ontogenesis. This review provides the information on the key transcription factors and molecular regulatory cascades (BMP, Wnt, Wt1, Slit/Robo, RhoA, podoplanin, VEGF, and PDGF) involved in (epi)genetic control of the pacemaker myocyte progenitors and determination of their electrophysiological phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Souza, D.S., Barreto, T., Santana, M.N.S., Menezes-Filho, J.E., Cruz, J.S., and Vasconcelos, C.M., Resident macrophages orchestrating heart rate, Arq. Bras. Cardiol., 2019, vol. 112, no. 5, pp. 588–591.

    PubMed  PubMed Central  Google Scholar 

  2. Faber, J.W., Boukens, B.J., Oostra, R.J., Moorman, A.F., Christoffels, V.M., and Jensen, B., Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies, J. Anat., 2019, vol. 234, no. 5, pp. 583–591.

    PubMed  PubMed Central  Google Scholar 

  3. Eif, V.W.W., Stefanovic, S., Duijvenboden, K., Bak-ker, M., Wakker, V., Gier-de, Vries, C., Zaffran, S., Verkerk, A.O., Boukens, B.J., and Christoffels, V.M., Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program, Development, 2019, vol. 146, no. 8, art. ID 173161.

    Google Scholar 

  4. Sizarov, A., Devalla, H.D., Anderson, R.H., Passier, R., Christoffels, V.M., and Moorman, A.F., Molecular analysis of patterning of conduction tissues in the develo** human heart, Circ.: Arrhythmia Electrophysiol., 2011, vol. 4, no. 4, p. 532.

    Google Scholar 

  5. Burdsal, C.A., Damsky, C.H., and Pedersen, R.A., The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak, Development, 1993, vol. 118, no. 3, pp. 829–844.

    CAS  PubMed  Google Scholar 

  6. Cai, W., Guzzo, R.M., Wei, K., Willems, E., Davidovics, H., and Mercola, M., A nodal-to-TGFβ cascade exerts biphasic control over cardiopoiesis, Circ. Res., 2012, vol. 111, no. 7, pp. 876–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazzotta, S., Neves, C., Bonner, R.J., Bernardo, A.S., Docherty, K., and Hoppler, S., Distinctive roles of canonical and noncanonical Wnt signaling in human embryonic cardiomyocyte development, Stem Cell Rep., 2016, vol. 7, no. 4, pp. 764–776.

    CAS  Google Scholar 

  8. Steinhart, Z. and Angers, S., Wnt signaling in development and tissue homeostasis, Development, 2018, vol. 145, no. 11, art. ID 146589.

    Google Scholar 

  9. Zaffran, S. and Frasch, M., Early signals in cardiac development, Circ. Res., 2002, vol. 91, no. 6, pp. 457–469.

    CAS  PubMed  Google Scholar 

  10. Ciruna, B. and Rossant, J., FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak, Dev. Cell, 2001, vol. 1, no. 1, pp. 37–49.

    CAS  PubMed  Google Scholar 

  11. Moorman, A.F.M., Christoffels, V.M., Anderson, R.H., and Hoff, M.J., The heart-forming fields: One or multiple?, Philos. Trans. R. Soc., B, vol. 362, no. 1484, pp. 1257–1265.

  12. Stalsberg, H. and DeHaan, R.L., The precardiac areas and formation of the tubular heart in the chick embryo, Dev. Biol., 1969, vol. 19, no. 2, pp. 128–159.

    CAS  PubMed  Google Scholar 

  13. Tyser, R.C., Miranda, A.M., Chen, C.-M., Davidson, S.M., Srinivas, S., and Riley, P.R., Calcium handling precedes cardiac differentiation to initiate the first heartbeat, Elife, 2016, vol. 5, p. e17113.

    PubMed  PubMed Central  Google Scholar 

  14. Patten, B.M., Initiation and early changes in the character of the heart beat in vertebrate embryos, Physiol. Rev., 1949, vol. 29, no. 1, pp. 31–47.

    CAS  PubMed  Google Scholar 

  15. Forouhar, A.S., Liebling, M., Hickerson, A., Nasiraei-Moghaddam, A., Tsai, H.J., Hove, J.R., Fraser, S.E., Dickinson, M.E., and Gharib, M., The embryonic vertebrate heart tube is a dynamic suction pump, Science, 2006, vol. 312, no. 5774, pp. 751–753.

    CAS  PubMed  Google Scholar 

  16. Van Mierop, L.H.S., Location of pacemaker in chick embryo heart at the time of initiation of heartbeat, Am. J. Physiol., 1967, vol. 212, no. 2, pp. 407–415.

    CAS  PubMed  Google Scholar 

  17. Groot, A.C.G., Bartelings, M.M., Poelmann, R.E., Haak, M.C., and Jongbloed, M.R., Embryology of the heart and its impact on understanding fetal and neonatal heart disease, Semin. Fetal Neonat. Med., 2013, vol. 18, no. 5, pp. 237–244.

    Google Scholar 

  18. Später, D., Abramczuk, M.K., Buac, K., Zangi, L., Stachel, M.W., Clarke, J., Sahara, M., Ludwig, A., and Chien, K.R., A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells, Nat. Cell Biol., 2013, vol. 15, no. 9, pp. 1098–1106.

    PubMed  Google Scholar 

  19. Garcia-Frigola, C., Shi, Y., and Evans, S.M., Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development, Gene Expression Patterns, 2003, vol. 3, no. 6, pp. 777–783.

    CAS  PubMed  Google Scholar 

  20. Christoffels, V.M., Mommersteeg, M.T.M., Trowe, M.-O., Prall, O.W., de Gier-de Vries, C., Soufan, A.T., Bussen, M., Schuster-Gossler, K., Harvey, R.P., Moorman, A.F.M., and Kispert, A., Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18, Circ. Res., 2006, vol. 98, no. 12, pp. 1555–1563.

    CAS  PubMed  Google Scholar 

  21. DiFrancesco, D., The role of the funny current in pacemaker activity, Circ. Res., 2010, vol. 106, no. 3, pp. 434–446.

    CAS  PubMed  Google Scholar 

  22. Aminu, A.J., Petkova, M., Atkinson, A.J., Yanni, J., Morris, A.D., Simms, R.T., Chen, W., Yin, Z., Kuniewicz, M., Holda, M.K., and Kuzmin, V.S., Further insights into the molecular complexity of the human sinus node—The role of “novel” transcription factors and microRNAs, Prog. Biophys. Mol. Biol., 2021, vol. 166, pp. 86–104. https://doi.org/10.1016/j.pbiomolbio.2021.04.008

    Article  CAS  PubMed  Google Scholar 

  23. Jensen, B., Vesterskov, S., Boukens, B.J., Nielsen, J.M., Moorman, A.F., Christoffels, V.M., and Wang, T., Morpho-functional characterization of the systemic venous pole of the reptile heart, Sci. Rep., 2017, vol. 7, no. 1, art. ID 6644.

    PubMed  PubMed Central  Google Scholar 

  24. Mommersteeg, M.T.M., Hoogaars, W.M.H., Prall, O.W.J., de Gier-de Vries, C., Wiese, C., Clout, D.E., Papaioannou, V.E., Brown, N.A., Harvey, R.P., Moor-man, A.F., and Christoffels, V.M., Molecular pathway for the localized formation of the sinoatrial node, Circ. Res., 2007, vol. 100, no. 3, pp. 354–362.

    CAS  PubMed  Google Scholar 

  25. Sylva M., Hoff, M.J.B., and Moorman, A.F.M., Development of the human heart, Am. J. Med. Genet., Part A, 2014, vol. 164A, no. 6, pp. 1347–1371.

    Google Scholar 

  26. Zhou, B., Ma, Q., Rajagopal, S., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K.R., and Pu, W.T., Epicardial progenitors contribute to the cardiomyocyte lineage in the develo** heart, Nature, 2008, vol. 454, no. 7200, pp. 109–113

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moorman, A.F.M. and Christoffels, V.M., Cardiac chamber formation: Development, genes, and evolution, Physiol. Rev., 2003, vol. 83, no. 4, p. 1223–1267.

    CAS  PubMed  Google Scholar 

  28. Buckingham, M., Meilhac, S., and Zaffran, S., Building the mammalian heart from two sources of myocardial cells, Nat. Rev. Genet., 2005, vol. 6, no. 11, pp. 826–835.

    CAS  PubMed  Google Scholar 

  29. Cai, C.-L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J., and Evans, S., Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev. Cell, 2003, vol. 5, no. 6, pp. 877–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Snarr, B.S., O’Neal, J.L., Chintalapudi, M.R., Wirrig, E.E., Phelps, A.L., Kubalak, S.W., and Wessels, A., Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development, Circ. Res., 2007, vol. 101, no. 10, pp. 971–974.

    CAS  PubMed  Google Scholar 

  31. Galli, D., Domínguez, J.N., Zaffran, S., Munk, A., Brown, N.A., and Buckingham, M.E., Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed, Development, 2008, vol. 135, no. 6, pp. 1157–1167.

    CAS  PubMed  Google Scholar 

  32. Douglas, Y.L., Jongbloed, M.R.M., Deruiter, M.C., and Gittenberger-de Groot, A.C., Normal and abnormal development of pulmonary veins: State of the art and correlation with clinical entities, J. Cardiol., 2011, vol. 147, no. 1, pp. 13–24.

    Google Scholar 

  33. Kelly, R.G., Brown, N.A., and Buckingham, M.E., The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm, Dev. Cell, 2001, vol. 1, no. 3, pp. 435–440.

    CAS  PubMed  Google Scholar 

  34. Van den Berg, G., Abu-Issa, R., de Boer, B.A., Hutson, M.R., de Boer, P.A., Soufan, A.T., Ruijter, J.M., Kirby, M.L., van den Hoff, M.J., and Moorman, A.F., A caudal proliferating growth center contributes to both poles of the forming heart tube, Circ. Res., 2009, vol. 104, no. 2, pp. 179–188.

    CAS  PubMed  Google Scholar 

  35. Mommersteeg, M.T.M., Domínguez, J.N., Wiese, C., Norden, J., De Gier-De Vries, C., Burch, J.B.E., Kispert, A., Brown, N.A., Moorman, A.F.M., and Christoffels, V.M., The sinus venosus progenitors separate and diversify from the first and second heart fields early in development, Cardiovasc. Res., 2010, vol. 87, no. 1, pp. 92–101.

    CAS  PubMed  Google Scholar 

  36. Bondue, A. and Blanpain, C., Mesp1: A key regulator of cardiovascular lineage commitment, Circ. Res., 2010, vol. 107, no. 12, pp. 575–578.

    Google Scholar 

  37. Groot, A.C.G., Mahtab, E.A.F., Hahurij, N.D., Wisse, L.J., Deruiter, M.C., Wijffels, M.C., and Poelmann, R.E., Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the develo** cardiac pacemaking and conduction system, Anat. Rec., 2007, vol. 290, no. 1, p. 115.

    Google Scholar 

  38. Stefanovic, S. and Christoffels, V.M., GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation, Cell. Mol. Life Sci., 2015, vol. 72, no. 20, pp. 3871–3881.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, Q., Zhou, B., and Pu, W.T., Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity, Dev. Biol., 2008, vol. 323, no. 1, pp. 98–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiese, C., Grieskamp, T., Airik, R., Mommersteeg, M.T., Gardiwal, A., de Gier-de, VriesC., Schuster-Gossler, K., Moorman, A.F., Kispert, A., and Christoffels, V.M., Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3, Circ. Res., 2009, vol. 104, no. 3, pp. 388–397.

    CAS  PubMed  Google Scholar 

  41. Sizarov, A., Anderson, R.H., Christoffels, V.M., and Moorman, A.F., Three-dimensional and molecular analysis of the venous pole of the develo** human heart, Circulation, 2010, vol. 122, no. 8, pp. 798–807.

    PubMed  Google Scholar 

  42. Anderson, R.H., Brown, N.A., and Moorman, A.F.M., Development and structures of the venous pole of the heart, Dev. Dyn., 2006, vol. 235, no. 1, p. 2–9.

    PubMed  Google Scholar 

  43. Kuz’min, V.S., Alekseeva, N.V., and Rozenshtraukh, L.V., The myocardium of thoracic veins in vertebrate animals. Origin and control of bioelectrical properties, Usp. Fiziol. Nauk, 2017, vol. 48, no. 3, pp. 3–28.

    Google Scholar 

  44. Wessels, A. and Sedmera, D., Developmental anatomy of the heart: A tale of mice and man, Physiol. Genomics, 2003, vol. 15, no. 3, pp. 165–176.

    PubMed  Google Scholar 

  45. Singh, R., Hoogaars, W.M., Barnett, P., Grieskamp, T., Rana, M.S., Buermans, H., Farin, H.F., Petry, M., Heallen, T., Martin, J.F., and Moorman, A.F., Tbx2 and tbx3 induce atrioventricular myocardial development and endocardial cushion formation, Cell. Mol. Life Sci., 2012, vol. 69, no. 8, pp. 1377–1389.

    CAS  PubMed  Google Scholar 

  46. Liang, X., Wang, G., Lin, L., Lowe, J., Zhang, Q., Bu, L., Chen, Y., Chen, J., Sun, Y., and Evans, S.M., HCN4 dynamically marks the first heart field and conduction system precursors, Circ. Res., 2013, vol. 113, no. 4, pp. 399–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun, C., Yu, D., Ye, W., Liu, C., Gu, S., Sinsheimer, N.R., Song, Z., Li, X., Chen, C., Song, Y., and Wang, S., The short stature Homeobox 2 (Shox2)-bone morphogenetic protein (BMP) pathway regulates dorsal mesenchymal protrusion development and its temporary function as a pacemaker during cardiogenesis, J. Biol. Chem., 2015, vol. 290, no. 4, pp. 2007–2023.

    CAS  PubMed  Google Scholar 

  48. Ivanova, A.D., Samoilova, D.V., Razumov, A.A., and Kuzmin, V.S., Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis, Pflugers Arch., 2019, vol. 471, no. 11–12, pp. 1493–1503.

    CAS  PubMed  Google Scholar 

  49. Van Mierop, L.H. and Gessner, I.H., The morphologic development of the sinoatrial node in the mouse, Am. J. Cardiol., 1970, vol. 25, no. 2, pp. 204–212.

    CAS  PubMed  Google Scholar 

  50. Kuzmin, V.S., Ivanova, A.D., Potekhina, V.M., Samoilova, D.V., Ushenin, K.S., Shvetsova, A.A., and Petrov, A.M., The susceptibility of the rat pulmonary and caval vein myocardium to the catecholamine-induced ectopy changes oppositely in postnatal development, J. Physiol., 2021, vol. 599, no. 11, pp. 2803–2821.

    CAS  PubMed  Google Scholar 

  51. Hoogaars, W.M.H., Engel, A., Brons, J.F., Verkerk, A.O., de Lange, F.J., Wong, L.Y.E., Bakker, M.L., Clout, D.E., Wakker, V., Barnett, P., and Ravesloot, J.H., Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria, Genes Dev., 2007, vol. 21, no. 9, pp. 1098–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoogaars, W.M.H., Tessari, A., Moorman, A.F.M., de Boer, P.A., Hagoort, J., Soufan, A.T., Campione, M., and Christoffels, V.M., The transcriptional repressor Tbx3 delineates the develo** central conduction system of the heart, Cardiovasc. Res., 2004, vol. 62, no. 3, pp. 489–499.

    CAS  PubMed  Google Scholar 

  53. Frank, D.U., Carter, K.L., Thomas, K.R., Burr, R.M., Bakker, M.L., Coetzee, W.A., Tristani-Firouzi, M., Bamshad, M.J., Christoffels, V.M., and Moon, A.M., Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 3, pp. E154–E163.

    CAS  PubMed  Google Scholar 

  54. Mohan, R.A., Mommersteeg, M.T.M., Domínguez, J.N., Choquet, C., Wakker, V., de Gier-de, Vries, C., Boink, G.J., Boukens, B.J., Miquerol, L., Verkerk, A.O., and Christoffels, V.M., Embryonic Tbx3+ cardiomyocytes form the mature cardiac conduction system by progressive fate restriction, Development, 2018, vol. 145, no. 17, art. ID 167361.

    Google Scholar 

  55. Bakker, M.L., Boink, G.J.J., Boukens, B.J., Verkerk, A.O., Van den Boogaard, M., den Haan, A.D., Hoogaars, W.M., Buermans, H.P., de Bakker, J.M., Seppen, J., and Tan, H.L., T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells, Cardiovasc. Res., 2012, vol. 94, no. 3, pp. 439–449.

    CAS  PubMed  Google Scholar 

  56. Wu, M., Peng, S., Yang, J., Tu, Z., Cai, X., Cai, C.L., Wang, Z., and Zhao, Y., Baf250a orchestrates an epigenetic pathway to repress the Nkx2.5-directed contractile cardiomyocyte program in the sinoatrial node, Cell Res., 2014, vol. 24, no. 10, pp. 1201–1213.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Christoffels, V.M., Hoogaars, W.M.H., Tessari, A., Clout, D.E.W., Moorman, A.F.M., and Campione, M., T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers, Dev. Dyn., 2004, vol. 229, no. 4, pp. 763–770.

    CAS  PubMed  Google Scholar 

  58. Ivanova, A.D., Filatova, T.S., Abramochkin, D.V., Atkinson, A., Dobrzynski, H., Kokaeva, Z.G., Merzlyak, E.M., Pustovit, K.B., and Kuzmin, V.S., Attenuation of inward rectifier potassium current contributes to the α1-adrenergic receptor-induced proarrhythmicity in the caval vein myocardium, Acta Physiol. (Oxf.), 2021, vol. 231, no. 4, p. e13597.

    CAS  Google Scholar 

  59. Domínguez, J.N., Meilhac, S.M., Bland, Y.S., Buckingham, M.E., and Brown, N.A., Asymmetric fate of the posterior part of the second heart field results in unexpected left/right contributions to both poles of the heart, Circ. Res., 2012, vol. 111, no. 10, pp. 1323–1335.

    PubMed  Google Scholar 

  60. Franco, D. and Campione, M., The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases, Trends Cardiovasc. Med., 2003, vol. 13, no. 4, pp. 157–163.

    CAS  PubMed  Google Scholar 

  61. Wang, J., Klysik, E., Sood, S., Johnson, R.L., Wehrens, X.H., and Martin, J.F., Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 21, pp. 9753–9758.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Durocher, D., Charron, F., Warren, R., Schwartz, R.J., and Nemer, M., The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors, EMBO J., 1997, vol. 16, no. 18, pp. 5687–5696.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Garg, V., Kathiriya, I.S., Barnes, R., Schluterman, M.K., King, I.N., Butler, C.A., Rothrock, C.R., Eapen, R.S., Hirayama-Yamada, K., Joo, K., and Matsuoka, R., GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5, Nature, 2003, vol. 424, no. 6947, pp. 443–447.

    CAS  PubMed  Google Scholar 

  64. Habets, P.E.M.H., Moorman, A.F.M., Clout, D.E.W., van Roon, M.A., Lingbeek, M., van Lohuizen, M., Campione, M., and Christoffels, V.M., Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: Implications for cardiac chamber formation, Genes Dev., 2002, vol. 16, no. 10, pp. 1234–1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Blaschke, R.J., Hahurij, N.D., Kuijper, S., Just, S., Wisse, L.J., Deissler, K., Maxelon, T., Anastassiadis, K., Spitzer, J., Hardt, S.E., and Schöler, H., Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development, Circulation, 2007, vol. 115, no. 14, pp. 1830–1838.

    CAS  PubMed  Google Scholar 

  66. Hoffmann, S., Berger, I.M., Glaser, A., Bacon, C., Li, L., Gretz, N., Steinbeisser, H., Rottbauer, W., Just, S., and Rappold, G., Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia, Basic Res. Cardiol., 2013, vol. 108, no. 2, p. 339.

    PubMed  PubMed Central  Google Scholar 

  67. van Eif, V.W.W., Devalla, H.D., Boink, G.J.J., and Christoffels, V.M., Transcriptional regulation of the cardiac conduction system, Nat. Rev. Cardiol., 2018, vol. 15, no. 10, pp. 617–630.

    CAS  PubMed  Google Scholar 

  68. Ye, W., Wang, J., Song, Y., Yu, D., Sun, C., Liu, C., Chen, F., Zhang, Y., Wang, F., Harvey, R.P., Schrader, L., Martin, J.F., and Chen, Y., A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node, Development, 2015, vol. 142, no. 14, pp. 2521–2532.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Potekhina, V.M., Averina, O.A., Razumov, A.A., Kuzmin, V.S., and Rozenshtraukh, L.V., The local repolarization heterogeneity in the murine pulmonary veins myocardium contributes to the spatial distribution of the adrenergically induced ectopic foci, J. Physiol. Sci., 2019, vol. 69, no. 6, pp. 1041–1055.

    CAS  PubMed  Google Scholar 

  70. Espinoza-Lewis, R.A., Yu, L., He, F., Liu, H., Tang, R., Shi, J., Sun, X., Martin, J.F., Wang, D., Yang, J., and Chen, Y., Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5, Dev. Biol., 2009, vol. 327, no. 2, pp. 376–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van Wijk, B., Moorman, A.F.M., and Hoff, M.J.B., Role of bone morphogenetic proteins in cardiac differentiation, Cardiovasc. Res., 2007, vol. 74, no. 2, pp. 244–255.

    CAS  PubMed  Google Scholar 

  72. Ma, L., Lu, M.-F., Schwartz, R.J., and Martin, J.F., Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning, Development, 2005, vol. 132, no. 24, pp. 5601–5611.

    CAS  PubMed  Google Scholar 

  73. Puskaric, S., Schmitteckert, S., Mori, A.D., Glaser, A., Schneider, K.U., Bruneau, B.G., Blaschke, R.J., Steinbeisser, H., and Rappold, G., Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the develo** heart, Hum. Mol. Genet., 2010, vol. 19, no. 23, pp. 4625–4633.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, L., Du, J., **g, X., Yan, Y., Deng, S., Hao, Z., and She, Q., Bone morphogenetic protein 4 promotes the differentiation of Tbx18-positive epicardial progenitor cells to pacemaker-like cells, Exp. Ther. Med., 2019, vol. 17, no. 4, pp. 2648–2656.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Willert, K. and Nusse, R., Wnt proteins, Cold Spring Harbor Perspect. Biol., 2012, vol. 4, no. 9, art. ID a007864.

    Google Scholar 

  76. Nusse, R., Wnt signaling in disease and in development, Cell Res., 2005, vol. 15, no. 1, pp. 28–32.

    CAS  PubMed  Google Scholar 

  77. Valenta, T., Hausmann, G., and Basler, K., The many faces and functions of β-catenin, EMBO J., 2012, vol. 31, no. 12, pp. 2714–2736.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hoppler, S. and Mazzotta, S., Wnt Signaling in heart organogenesis, in Wnt Signaling in Development and Disease: Molecular Mechanisms and Biological Functions, Hoppler, S. and Moon, R.T., Eds., Hoboken: John Wiley and Sons, 2014, pp. 293–301.

    Google Scholar 

  79. Norden, J., Greulich, F., Rudat, C., Taketo, M.M., and Kispert, A., Wnt/β-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation, Circ. Res., 2011, vol. 109, no. 6, pp. 42–50.

    Google Scholar 

  80. Cohen, E.D., Miller, M.F., Wang, Z., Moon, R.T., and Morrisey, E.E., Wnt5a and Wnt11 are essential for second heart field progenitor development, Development, 2012, vol. 139, no. 11, pp. 1931–1940.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Martínez-Estrada, O.M., Lettice, L.A., Essafi, A., Guadix, J.A., Slight, J., Velecela, V., Hall, E., Reichmann, J., Devenney, P.S., Hohenstein, P., and Hosen, N., Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin, Nat. Genet., 2010, vol. 42, no. 1, pp. 89–93.

    PubMed  Google Scholar 

  82. Norden, J., Grieskamp, T., Lausch, E., van Wijk, B., Hoff, M.J., Englert, C., Petry, M., Mommersteeg, M.T., Christoffels, V.M., Niederreither, K., and Kispert, A., Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns, Circ. Res., 2010, vol. 106, no. 7, pp. 1212–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Niederreither, K., Vermot, J., Messaddeq, N., Schuhbaur, B., Chambon, P., and Dollé, P., Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse, Development, 2001, vol. 128, no. 7, pp. 1019–1031.

    CAS  PubMed  Google Scholar 

  84. Kidd, T., Bland, K.S., and Goodman, C.S., Slit is the midline repellent for the Robo receptor in Drosophila, Cell, 1999, vol. 96, no. 6, pp. 785–794.

    CAS  PubMed  Google Scholar 

  85. Jones, C.A., London, N.R., Chen, H., Park, K.W., Sauvaget, D., Stockton, R.A., Wythe, J.D., Suh, W., Larrieu-Lahargue, F., Mukouyama, Y.S., and Lindblom, P., Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability, Nat. Med., 2008, vol. 14, no. 4, pp. 448–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ypsilanti, A.R., Zagar, Y., and Chédotal, A., Moving away from the midline: New developments for Slit and Robo, Development, 2010, vol. 137, no. 12, pp. 1939–1952.

    CAS  PubMed  Google Scholar 

  87. Zhao, J. and Mommersteeg, M.T.M., Slit-Robo signalling in heart development, Cardiovasc. Res., 2018, vol. 114, no. 6, pp. 794–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kruszka, P., Tanpaiboon, P., Neas, K., Crosby, K., Berger, S.I., Martinez, A.F., Addissie, Y.A., Pongprot, Y., Sittiwangkul, R., Silvilairat, S., Makonkawkeyoon, K., et al., Loss of function in ROBO1 is associated with tetralogy of Fallot and septal defects, J. Med. Genet., 2017, vol. 54, no. 12, pp. 825–829.

    PubMed  Google Scholar 

  89. Mommersteeg, M.T.M., Andrews, W.D., Ypsilanti, A.R., Zelina, P., Yeh, M.L., Norden, J., Kispert, A., Chédotal, A., Christoffels, V.M., and Parnavelas, J.G., Slit-roundabout signaling regulates the development of the cardiac systemic venous return and pericardium, Circ. Res., 2013, vol. 112, no. 3, pp. 465–475.

    CAS  PubMed  Google Scholar 

  90. Medioni, C., Bertrand, N., Mesbah, K., Hudry, B., Dupays, L., Wolstein, O., Washkowitz, A.J., Papaioannou, V.E., Mohun, T.J., Harvey, R.P., and Zaffran, S., Expression of Slit and Robo genes in the develo** mouse heart, Dev. Dyn., 2010, vol. 239, no. 12, pp. 3303–3311.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Astarita, J., Acton, S., and Turley, S., Podoplanin: Emerging functions in development, the immune system, and cancer, Front. Immunol., 2012, vol. 3, art. ID 283.

    PubMed  PubMed Central  Google Scholar 

  92. Quintanilla, M., Montero-Montero, L., Renart, J., and Martín-Villar, E., Podoplanin in inflammation and cancer, Int. J. Mol. Sci., 2019, vol. 20, no. 3, art. ID 707.

    CAS  PubMed Central  Google Scholar 

  93. Mahtab, E.A.F., Vicente-Steijn, R., Hahurij, N.D., Jongbloed, M.R., Wisse, L.J., DeRuiter, M.C., Uhrin, P., Zaujec, J., Binder, B.R., Schalij, M.J., Poelmann, R.E., and Gittenberger-De Groot, A.C., Podoplanin deficient mice show a rhoa-related hypoplasia of the sinus venosus myocardium including the sinoatrial node, Dev. Dyn., 2009, vol. 238, no. 1, pp. 183–193.

    PubMed  Google Scholar 

  94. Mahtab, E.A.F., Wijffels, M.C.E.F., Van Den, Akker, N.M.S., Hahurij, N.D., Lie-Venema, H., Wisse, L.J., DeRuiter, M.C., Uhrin, P., Zaujec, J., Binder, B.R., Schalij, M.J., Poelmann, R.E., and Gittenberger-De Groot, A.C., Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: Correlation with abnormal epicardial development, Dev. Dyn., 2008, vol. 237, no. 3, pp. 847–857.

    CAS  PubMed  Google Scholar 

  95. Martín-Villar, E., Megías, D., Castel, S., and Yurrita, M.M., Vilaró, S., Quintanilla, M., Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition, J. Cell Sci., 2006, vol. 119, no. 21, pp. 4541–4553.

    PubMed  Google Scholar 

  96. Amin, E., Dubey, B.N., Zhang, S.-C., Gremer, L., Dvorsky, R., Moll, J.M., Taha, M.S., Nagel-Steger, L., Piekorz, R.P., Somlyo, A.V., and Ahmadian, M.R., Rho-kinase: Regulation, (dys)function, and inhibition, Biol. Chem., 2013, vol. 394, no. 11, pp. 1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vicente-Steijn, R., Kolditz, D.P., Mahtab, E.A.F., Askar, S.F.A., Bax, N.A.M., Van Der Graaf, L.M., Wisse, L.J., Passier, R., Pijnappels, D.A., Schalij, M.J., Poelmann, R.E., et al., Electrical activation of sinus venosus myocardium and expression patterns of RhoA and Isl-1 in the chick embryo, J. Cardiovasc. Electrophysiol., 2010, vol. 21, no. 11, pp. 1284–1292.

    PubMed  Google Scholar 

  98. Vicente-Steijn, R., Kelder, T.P., Tertoolen, L.G., Wisse, L.J., Pijnappels, D.A., Poelmann, R.E., Schalij, M.J., deRuiter, M.C., Gittenberger-de, Groot, A.C., and Jongbloed, M.R.M., RHOA-ROCK signalling is necessary for lateralization and differentiation of the develo** sinoatrial node, Cardiovasc. Res., 2017, vol. 113, no. 10, pp. 1186–1197.

    CAS  PubMed  Google Scholar 

  99. Carmeliet, P., Ng, Y.S., Nuyens, D., Theilmeier, G., Brusselmans, K., Cornelissen, I., Ehler, E., Kakkar, V.V., Stalmans, I., Mattot, V., and Perriard, J.C., Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188, Nat. Med., 1999, vol. 5, no. 5, pp. 495–502.

    CAS  PubMed  Google Scholar 

  100. Akker, N.M.S., Caolo, V., and Molin, D.G.M., Cellular decisions in cardiac outflow tract and coronary development: An act by VEGF and NOTCH, Differentiation, 2012, vol. 84, no. 1, pp. 62–78.

    PubMed  Google Scholar 

  101. Calkoen, E.E., Vicente-steijn, R., Hahurij, N.D., van Munsteren, C.J., Roest, A.A., DeRuiter, M.C., Steendijk, P., Schalij, M.J., Gittenberger-de Groot, A.C., Blom, N.A., and Jongbloed, M.R., Abnormal sinoatrial node development resulting from disturbed vascular endothelial growth factor signaling, J. Cardiol., 2015, vol. 183, pp. 249–257.

    Google Scholar 

  102. Hellström, M., Phng, L.-K., and Gerhardt, H., VEGF and Notch signaling: The yin and yang of angiogenic sprouting, Cell Adhes. Migr., 2007, vol. 1, no. 3, pp. 133–136.

    Google Scholar 

  103. Wang, Y., Wu, B., Lu, P., Zhang, D., Wu, B., Varshney, S., del Monte-Nieto, G., Zhuang, Z., Charafeddine, R., Kramer, A.H., Sibinga, N.E., et al., Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1, Nat. Commun., 2017, vol. 8, no. 1, art. ID 578.

    PubMed  PubMed Central  Google Scholar 

  104. Wang, Y., Lu, P., Jiang, L., Wu, B., and Zhou, B., Control of sinus venous valve and sinoatrial node development by endocardial NOTCH1, Cardiovasc. Res., 2020, vol. 116, no. 8, pp. 1473–1486.

    CAS  PubMed  Google Scholar 

  105. Van Den Akker, N.M.S., Lie-Venema, H., Maas, S., Eralp, I., DeRuiter, M.C., Poelmann, R.E., and Gittenberger-De Groot, A.C., Platelet-derived growth factors in the develo** avian heart and maturating coronary vasculature, Dev. Dyn., 2005, vol. 233, no. 4, pp. 1579–1588.

    CAS  PubMed  Google Scholar 

  106. Bax, N.A.M., Bleyl, S.B., Gallini, R., Wisse, L.J., Hunter, J., Van Oorschot, A.A.M., Mahtab, E.A.F., Lie-Venema, H., Goumans, M.J., Betsholtz, C., and Gittenberger-de Groot, A.C., Cardiac malformations in Pdgfrα mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field, Dev. Dyn., 2010, vol. 239, no. 8, pp. 2307–2317.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zheng, X., Wang, F., Hu, X., Li, H., Guan, Z., Zhang, Y., and Hu, X., PDGFRα-signaling is dispensable for the development of the sinoatrial node after its fate commitment, Front. Cell Dev. Biol., 2021, vol. 9, art. ID 647165.

    PubMed  PubMed Central  Google Scholar 

  108. Zhao, H., Wang, F., Zhang, W., Yang, M., Tang, Y., Wang, X., Zhao, Q., and Huang, C., Overexpression of TBX3 in human induced pluripotent stem cells (hiPSCs) increases their differentiation into cardiac pacemaker-like cells, Biomed. Pharmacother., 2020, vol. 130, art. ID 110612.

    CAS  PubMed  Google Scholar 

  109. Gorabi, A.M., Hajighasemi, S., Khori, V., Soleimani, M., Rajaei, M., Rabbani, S., Atashi, A., Ghiaseddin, A., Saeid, A.K., Tafti, H.A., and Sahebkar, A., Functional biological pacemaker generation by T-Box18 protein expression via stem cell and viral delivery approaches in a murine model of complete heart block, Pharmacol. Res., 2019, vol. 141, pp. 443–450.

    CAS  PubMed  Google Scholar 

  110. Schweizer, P.A., Darche, F.F., Ullrich, N.D., Geschwill, P., Greber, B., Rivinius, R., and Seyler, C., Müller-Decker, K., Draguhn, A., Utikal, J., Koenen, M., et al., Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells, Stem Cell Res. Ther., 2017, vol. 8, no. 1, art. ID 229.

    PubMed  PubMed Central  Google Scholar 

  111. Naumova, N. and Iop, L., Bioengineering the cardiac conduction system: advances in cellular, gene, and tissue engineering for heart rhythm regeneration, Front. Bioeng. Biotechnol., 2021, vol. 9, art. ID 673477.

    PubMed  PubMed Central  Google Scholar 

  112. Protze, S.I., Liu, J., Nussinovitch, U., Ohana, L., Backx, P.H., Gepstein, L., and Keller, G.M., Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker, Nat. Biotechnol., 2017, vol. 35, no. 1, pp. 56–68.

    CAS  PubMed  Google Scholar 

  113. Cingolani, E., Goldhaber, J.I., and Marbán, E., Next-generation pacemakers: From small devices to biological pacemakers, Nat. Rev. Cardiol., 2018, vol. 15, no. 3, pp. 139–150.

    PubMed  Google Scholar 

  114. Quan, D. and Huang, H., In vitro study of the effects of reprogramming neonatal rat fibroblasts transfected with TBX18 on spontaneous beating in neonatal rat cardiomyocytes, Mol. Med. Rep., 2018, vol. 18, no. 6, pp. 5520–5526.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, J. and Huang, C., A new combination of transcription factors increases the harvesting efficiency of pacemaker-like cells, Mol. Med. Rep., 2019, vol. 19, no. 5, pp. 3584–3592.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Goodyer, W.R., Beyersdorf, B.M., Paik, D.T., Tian, L., Li, G., Buikema, J.W., Chirikian, O., Choi, S., Venkatraman, S., Adams, E.L., Tessier-Lavigne, M., et al., Transcriptomic profiling of the develo** cardiac conduction system at single-cell resolution, Circ. Res., 2019, vol. 125, no. 4, pp. 379–397.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was funded by the Russian Foundation for Basic Research, project no. 20-14-50459.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Kuzmin or A. A. Kamensky.

Ethics declarations

Conflict of Interests. The authors declare that they have no conflict of interests.

Statement on the Welfare of Animals. This article does not contain any studies involving animals or humans performed by any of the authors.

Additional information

Translated by E. Sherstyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, V.S., Kamensky, A.A. The Molecular and Cellular Mechanisms of Heart Pacemaker Development in Vertebrates. Moscow Univ. Biol.Sci. Bull. 76, 147–164 (2021). https://doi.org/10.3103/S0096392521040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392521040064

Keywords:

Abbreviations:

Navigation