Log in

Decoding Fluorescence Excitation-Emission Matrices of Carbon Dots Aqueous Solutions with Convolutional Neural Networks to Create Multimodal Nanosensor of Metal Ions

  • MACHINE LEARNING IN NATURAL SCIENCES
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this study, to create a carbon dots-based multimodal nanosensor of metal ions, a new approach to solving the inverse problem of fluorescence spectroscopy is presented. The problem is to simultaneously determine the concentration of heavy metal ions Cr\({}^{3+}\), Ni\({}^{2+}\), Cu\({}^{2+}\), and nitrate anions NO\({}^{-}_{3}\) in water by carbon dots (CDs) fluorescence spectra. A method of spectral data augmentation is proposed. It is based on the generation of excitation-emission matrices of CDs fluorescence from the noise vector using variational autoencoders and further determination of ion concentration corresponding to the generated matrices with convolutional neural networks. Implementing the proposed approach allowed reducing the mean absolute error in determining the concentration of ions by 60\(\%\) for Cr\({}^{3+}\), by 41\(\%\) for Ni\({}^{2+}\), by 62\(\%\) for Cu\({}^{2+}\), and by 48\(\%\) for NO\({}^{-}_{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Z. He, Y. Sun, C. Zhang, et al., Carbon 204, 76 (2023). https://doi.org/10.1016/j.carbon.2022.12.052

    Article  Google Scholar 

  2. N. Prabhakar, T. Näreoja, E. von Haartman, et al., RSC 7, 10410 (2015). https://doi.org/10.1039/c5nr01403d

    Article  Google Scholar 

  3. O. Sarmanova, S. Burikov, S. Dolenko, et al., Nanomedicine: NBM 14, 1371 (2018). https://doi.org/10.1016/j.nano.2018.03.009

    Article  Google Scholar 

  4. N. A. S. Omar, Y. W. Fen, R. Irmawati, et al., J. Nanomater. 12, 2365 (2022). https://doi.org/10.3390/nano12142365

    Article  Google Scholar 

  5. M. L. Liu, B. B. Chen, C. M. Li, et al., RSC 21, 449 (2019). https://doi.org/10.1039/c8gc02736f

    Article  Google Scholar 

  6. C. Shorten and T.M. Khoshgoftaar, J. Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  7. C.M. Valensise, A. Giuseppi, F. Vernuccio, et al., APL Phot. 5, 061305 (2020). https://doi.org/10.1063/5.0007821

  8. K. Davaslioglu and Y. E. Sagduyu, Proc. IEEE Int. Conf. Commun. 1 (2018). https://doi.org/10.1109/ICC.2018.8422223

  9. A. Efitorov, S. Burikov, T. Dolenko, and S. Dolenko, in Advances in Neural Computation, Machine Learning, and Cognitive Research VI, Ed. by B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, and Y. Tiumentsev, Studies in Computational Intelligence, Vol. 1064 (Springer, Cham, 2023), pp. 557–565. https://doi.org/10.1007/978-3-031-19032-2_56

  10. S. Yu, H. Li, X. Li, et al., Sci. Total Environ. 726, 138477 (2020). https://doi.org/10.1016/j.scitotenv.2020.138477

  11. M. Pesteie, P. Abolmaesumi, and R. N. Rohling, IEEE Trans. Med. Imaging 38, 2807 (2019). https://doi.org/10.1109/TMI.2019.2914656

    Article  Google Scholar 

  12. Z. Al Nazi, A. Biswas, Md. A. Rayhan, and T. Azad Abir, ‘‘Classification of ECG signals by dot Residual LSTM Network with data augmentation for anomaly detection,’’ in 22nd Int. Conf. on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2019 (IEEE, 2019), pp. 1–5. https://doi.org/10.1109/ICCIT48885.2019.9038287

  13. F. Akbal and S. Camcl, Environ. Prog. Sustainable Energy 31, 340 (2011). https://doi.org/10.1002/ep.10546

    Article  Google Scholar 

  14. O. E. Sarmanova, K. A. Laptinskiy, S. A. Burikov, et al., Spectrochim. Acta, Part A 286, 122003 (2023). https://doi.org/10.1016/j.saa.2022.122003

  15. A. Asperti and M. Trentin, IEEE Access 8, 199440 (2020). https://doi.org/10.1109/ACCESS.2020.3034828

Download references

Funding

This study has been conducted at the expense of the grant of the Russian Science Foundation no. 22-12-00138, https://rscf.ru/en/project/22-12-00138/. The contribution of O.E. Sarmanova (programming and training of neural networks) was supported by the Foundation for the Development of Theoretical Physics and Mathematics ‘‘Basis’’ (project no. 19-2-6-6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Sarmanova.

Ethics declarations

The authors of this article declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmanova, O.E., Chugreeva, G.N., Laptinskiy, K.A. et al. Decoding Fluorescence Excitation-Emission Matrices of Carbon Dots Aqueous Solutions with Convolutional Neural Networks to Create Multimodal Nanosensor of Metal Ions. Moscow Univ. Phys. 78 (Suppl 1), S202–S209 (2023). https://doi.org/10.3103/S0027134923070287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134923070287

Keywords:

Navigation