Log in

On the Spectrum Localization of an Operator-Function Arising at Studying Oscillations of a Viscoelastic Pipeline with Kelvin–Voigt Friction

  • Published:
Moscow University Mathematics Bulletin Aims and scope

Abstract

In this paper we consider an operator function being a symbol of the abstract integro-differential equation describing the oscillations of a viscoelastic tube. The operator-function spectrum localization is determined in the paper and its resolvent norm is estimated in a domain free of spectral points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. N. Pyvovarchyk, ‘‘A boundary value problem connected with oscillations of an elastic rod with internal and external friction,’’ Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 3, 68–71 (1987).

  2. A. I. Miloslavskii, ‘‘Instability spectrum of an operator bundle,’’ Math. Notes Acad. Sci. USSR 49, 391–395 (1991). https://doi.org/10.1007/BF01158216

    Article  MathSciNet  Google Scholar 

  3. A. C. Pipkin and M. E. Gurtin, ‘‘A general theory of heat conduction with finite wave speeds,’’ Arch. Ration. Mech. Anal. 31, 113–126 (1968). https://doi.org/10.1007/BF00281373

    Article  MathSciNet  MATH  Google Scholar 

  4. V. V. Vlasov, N. A. Rautian, and A. S. Shamaev, ‘‘Analysis of operator models arising in problems of hereditary mechanics,’’ J. Math. Sci. 201, 673–692 (2014). https://doi.org/10.1007/s10958-014-2019-4

    Article  MathSciNet  MATH  Google Scholar 

  5. V. V. Vlasov and N. A. Rautian, ‘‘Spectral analysis of integrodifferential equations in a Hilbert space,’’ Sovrem. Mat. Fundam. Napravleniya 62, 53–71 (2016).

    Google Scholar 

  6. V. V. Vlasov and N. A. Rautian, ‘‘Properties of solutions of integro-differential equations arising in heat and mass transfer theory,’’ Trans. Moscow Math. Soc. 2014, 185–204 (2014). https://doi.org/10.1090/S0077-1554-2014-00231-4

    Article  MathSciNet  MATH  Google Scholar 

  7. V. V. Vlasov and N. A. Rautian, Spectral Analysis of Functional-Differential Equations (Maks Press, Moscow, 2016).

    MATH  Google Scholar 

  8. V. V. Vlasov and N. A. Rautian, ‘‘Well-posedness and spectral analysis of integrodifferential equations arising in viscoelasticity theory,’’ J. Math. Sci. 233, 555–577 (2018). https://doi.org/10.1007/s10958-018-3943-5

    Article  MathSciNet  MATH  Google Scholar 

  9. V. V. Vlasov and N. A. Rautian, ‘‘Spectral analysis and representation of solutions of integro-differential equations with fractional exponential kernels,’’ Trans. Moscow Math. Soc. 2019, 169–188 (2019). https://doi.org/10.1090/mosc/298

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Davydov, ‘‘Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate,’’ Moscow Univ. Math. Bull. 75, 65–71 (2020). https://doi.org/10.3103/S0027132220020035

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Lancaster and A. Shkalikov, ‘‘Damped vibrations of beams and related spectral problems,’’ Can. Appl. Math. Q. 2 (1), 45–90 (1994).

    MathSciNet  MATH  Google Scholar 

  12. A. A. Shkalikov and R. O. Griniv, ‘‘On an operator pencil arising in the problem of beam oscillation with internal dam**,’’ Math. Notes 56, 840–851 (1994). https://doi.org/10.1007/BF02110744

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Ivanov and L. Pandolfi, ‘‘Heat equations with memory: lack of controllability to the rest,’’ J. Math. Appl. 355, 1–11 (2009). https://doi.org/10.1016/j.jmaa.2009.01.008

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Pandolfi, ‘‘The controllability of the Gurtin–Pipkin equations: A cosine operator approach,’’ Appl. Math. Optim. 52, 143–165 (2005). https://doi.org/10.1007/s00245-005-0819-0

    Article  MathSciNet  MATH  Google Scholar 

  15. J. E. Muñoz Rivera and M. G. Naso, ‘‘On the decay of the energy for systems with memory and indefinite dissipation,’’ Asymptotic Anal. 49, 189–204 (2006).

    MathSciNet  MATH  Google Scholar 

  16. G. Amendola, M. Fabrizio, and J. M. Golden, Thermodynamics of Materials with Memory (Springer, Boston, 2012). https://doi.org/10.1007/978-1-4614-1692-0

  17. C. M. Dafermos, ‘‘Asymptotic stability in viscoelasticity,’’ Arch. Ration. Mech. Anal. 37, 297–308 (1970). https://doi.org/10.1007/BF00251609

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Fabrizio, C. Giorgi, and V. Pata, ‘‘A new approach to equations with memory,’’ Arch. Ration. Mech. Anal. 198, 189–232 (2010). https://doi.org/10.1007/s00205-010-0300-3

    Article  MathSciNet  MATH  Google Scholar 

  19. A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Bundles (Shtinitsa, Chisinău, 1986).

    Google Scholar 

  20. C. Carathéodory, Conformal Representations, Cambridge Tracts in Mathematics and Mathematical Physics (Cambrdige Univ. Press, Cambridge, 1932).

  21. A. Eremenko and S. Ivanov, ‘‘Spectra of Gurtin–Pipkin type equations,’’ SIAM J. Math. Anal. 43, 2296–2306 (2011). https://doi.org/10.1137/100811908

    Article  MathSciNet  MATH  Google Scholar 

  22. A. V. Davydov and Yu. A. Tikhonov, ‘‘Study of Kelvin–Voigt models arising in viscoelasticity,’’ Differ. Equations 54, 1620–1635 (2018). https://doi.org/10.1134/S001226611812008X

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Ts. Gokhberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space (Nauka, Moscow, 1965).

    Google Scholar 

  24. T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, vol. 132 (Springer, Berlin, 1966). https://doi.org/10.1007/978-3-662-12678-3

  25. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.V. Vlasov for problem formulation and to all participants of the workshop under his guidance for fruitful remarks, discussions, and support in this work.

Funding

The study is supported by the Interdisciplinary Research and Educational School Mathematical Methods of Analysis of Complex Systems of the Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Tikhonov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, Y.A. On the Spectrum Localization of an Operator-Function Arising at Studying Oscillations of a Viscoelastic Pipeline with Kelvin–Voigt Friction. Moscow Univ. Math. Bull. 77, 73–85 (2022). https://doi.org/10.3103/S0027132222020073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132222020073

Keywords:

Navigation