Log in

Antibacterial Activity of Amphiphiles Based on Indolyl-3-Carboxylic Acids and L-Lysine with an Ethylenediamine Linker

  • ORIGINAL ARTICLE
  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

Recently, due to the growth in bacterial infections resistant to antibiotics, there is an urgent need for develo** alternative antibacterial drugs. Alkyl-indolyl-L-lysines are a promising class of compounds; their amphiphilic structure is crucial in antimicrobial efficacy. A scheme is developed and five new derivatives of indolylbutyric and indolylacetic acids containing a polar amino acid residue with an ethylenediamine linker binding alkyl fragments with different lengths are synthesized. The antibacterial activity of the new amphiphiles against gram-positive and gram-negative bacterial strains is evaluated. The minimum binding energy of the synthesized compounds with human serum albumin (HSA) is determined by molecular docking. A lower affinity of the studied objects in comparison with control indolmycin is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Zhang, S., Qiu, X., Wang, R., Sun, L., Zhu, Z., Shan, G., and Li, Z., Future Med. Chem., 2020, vol. 12, no. 10, p. 877.

    Article  CAS  PubMed  Google Scholar 

  2. Philoppes, J.N., Abdelgawad, M.A., Abourehab, M.A.S., Sebak, M., Darwish, M.A., and Lamie, P.F., J. Enzyme Inhib. Med. Chem., 2023, vol. 38, no. 1, p. 246.

    Article  CAS  PubMed  Google Scholar 

  3. Sokhraneva, V.A., Yusupova, D.A., Boriskin, V.S., and Groza, N.V., Fine Chem. Technol., 2022, vol. 17, no. 3, p. 210.

    Article  Google Scholar 

  4. Simakov, S., Kartsev, V., Petrou, A., Nicolaou, I., Geronikaki, A., Ivanov, M., Kostic, M., Glamoclija, J., Sokovic, M., Talea, D., and Vizirianakis, I.S., Pharmaceuticals, 2021, vol. 14, no. 11, p. 1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nieto, M.J. and Lupton, H.K., Curr. Med. Chem., 2021, vol. 28, no. 24, p. 4828.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, V.P., Renjitha, J., Salfeena, F.C.T., Ashitha, K.T., Keri, R.S., Varughese, S., and Somappa, S.B., Chem. Biol. Drug Des., 2017, vol. 90, no. 5, p. 703.

    Article  Google Scholar 

  7. Tiwari, S., Kirar, S., Banerjee, U.C., Neerupudi, K.B., Singh, S., Wani, A.A., Bharatam, P.V., and Singh, I.P., Bioorg. Chem., 2020, vol. 99, p. 103787.

    Article  CAS  PubMed  Google Scholar 

  8. Lepri, S., Buonerba, F., Goracci, L., Velilla, I., Ruzziconi, R., Schindler, B.D., Seo, S.M., Kaatz, G.W., and Cruciani, G., J. Med. Chem., 2016, vol. 59, no. 3, p. 8671.

    Article  Google Scholar 

  9. Akunuri, R., Veerareddy, V., Kaul, G., Akhir, A., Unnissa, T., Parupalli, R., Madhavi, Y.V., Chopra, S., and Nanduri, S., Bioorg. Chem., 2021, vol. 116, p. 105288.

    Article  CAS  PubMed  Google Scholar 

  10. Shaikh, T. and Debebe, H., J. Chem., 2020, vol. 5, p. 4358453.

    Google Scholar 

  11. Yang, T., Moreira, W., Nyantakyi, S.A., Chen, H., Aziz, D.B., Go, M.-L., and Dick, T., J. Med. Chem., 2017, vol. 60, no. 7, p. 2745.

    Article  CAS  PubMed  Google Scholar 

  12. Turner, D.N., Edwards, L., Kornienko, A., Frolova, L.V., and Rogelj, S., Future Microbiol., 2020, vol. 15, no. 8, p. 579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin, H.L., Liu, J., Fang, W.Y., Ravindar, L., and Rakesh, K.P., Eur. J. Med. Chem., 2020, vol. 194, p. 112245.

    Article  CAS  PubMed  Google Scholar 

  14. Ramamourthy, G., Park, J., Seo, C., Vogel, J.H., and Park, Y., Microorganisms, 2020, vol. 8, no. 5, p. 758.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ghosh, C., Harmouche, N., Bechinger, B., and Haldar, J., ACS Omega, 2018, vol. 3, p. 91820.

    Google Scholar 

  16. Chen, Y.-F., Lai, Y.-D., Chang, C.-H., Tsai, Y.-C., Tang, C.-C., and Jan, J.-S., Nanoscale, 2019, vol. 11, no. 24, p. 11696.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y., Li, H., Liu, J., Zhong, R., Li, H., Fang, S., Liu, S., and Lin, S., Eur. J. Med. Chem., 2021, vol. 226, p. 113813.

    Article  CAS  PubMed  Google Scholar 

  18. RCSB Protein Data Bank. http://www.rcsb.org. Accessed August 26, 2023.

  19. Filatova, S.M., Denieva, Z.G., Budanova, U.A., and Sebyakin, Yu.L., Moscow Univ. Chem. Bull., 2020, vol. 75, no. 6, p. 320.

    Article  Google Scholar 

  20. Trindade, A., Frade, R., Maçôas, E., Graça, C., Rodrigues, C., Martinho, J., and Afonso, C., Org. Biomol. Chem., 2014, vol. 12, no. 20, p. 3181.

    Article  CAS  PubMed  Google Scholar 

  21. Korotkin, M.D., Filatova, S.M., Denieva, Z.G., Budanova, U.A., and Sebyakin, Yu.L., Fine Chem. Technol., 2022, vol. 17, no. 1, p. 50.

    Article  CAS  Google Scholar 

  22. Jhaumeer, LaullooS., Caumul, P., Joondan, N., Jawaheer, S., Parboteeah, S., Dyall, S., and Bhowon, M., Biointerface Res. Appl. Chem., 2021, vol. 12, p. 7356.

    Google Scholar 

  23. Hurdle, J.G., O’Neill, A.J., and Chopra, I., J Antimicrob. Chemother., 2004, vol. 54, no. 2, p. 549.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Y., Xu, Y., Yue, Y., Wang, H., Cui, Y., Pan, M., Zhang, X., Zhang, L., Li, H., Xu, M., Tang, Y., and Chen, S., ACS Chem. Biol., 2022, vol. 7, no. 1, p. 39.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Shared Science and Training Center for Collective Use of MIREA–Russian Technological University.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-689 dated September 1, 2021).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of this publication.

Corresponding author

Correspondence to U. A. Budanova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, V.O., Mikhailova, A.Y., Budanova, U.A. et al. Antibacterial Activity of Amphiphiles Based on Indolyl-3-Carboxylic Acids and L-Lysine with an Ethylenediamine Linker. Moscow Univ. Chem. Bull. 79, 217–224 (2024). https://doi.org/10.3103/S0027131424700202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131424700202

Keywords:

Navigation