Log in

Physical and Chemical Properties of the Guest–Host Inclusion Complexes of Cyprofloxacin with β-Cyclodextrin Derivatives

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

We study the effect of the nature of the substituent in the β-cyclodextrin derivative on the physicochemical properties of the antibacterial drug ciprofloxacin (CF). CF can form guest–host inclusion complexes with β-cyclodextrin derivatives, characterized by dissociation constants (Kdis) in the range of 10–3 to 10–4 M. A ligand with a small polar uncharged substituent (2-hydroxypropyl) form of the most stable complex, which also helps to increase the solubility of CF by 20 and 64% in buffer systems having a pH of 4.0 and 7.4, respectively. The inclusion of CF in a complex with Kdis = 10–3 M or lower contributes to a slower release of the drug. The physicochemical properties of the obtained complexes allow develo** a highly effective formulation of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Davis, R., Markham, A., and Balfour, J.A., Drugs, 1996, vol. 51, no. 6, p. 1019.

    Article  CAS  Google Scholar 

  2. Campoli-Richards, D.M., Monk, J.P., and Price, A., Drugs, 1988, vol. 35, p. 373.

    Article  CAS  Google Scholar 

  3. Wolfson, J.S. and Hooper, D.C., Clin. Microbiol. Rev., 1989, vol. 2, no. 4, p. 378.

    Article  CAS  Google Scholar 

  4. Fish, D.N., Pharmacotherapy, 2001, vol. 21, no. 10 P.

  5. Ahmed, A.I.A., van der Heijden, F.M.M.A., van den Berkmortel, H., et al., Gen. Hosp. Psychiatry, 2011, vol. 33, no. 1, p. 82.e5.

    Google Scholar 

  6. Domagala, J.M., J. Antimicrob. Chemother., 1994, vol. 33, p. 685.

    Article  CAS  Google Scholar 

  7. Zhanel, G.G., Ennis, K., Vercaigne, L., et al., Drugs, 2002, vol. 62, no. 1, p. 13.

    Article  CAS  Google Scholar 

  8. Schacht, P., Arcieri, G., and Hullmann, R., Am. J. Med., 1989, vol. 87.

  9. Davis, M.E. and Brewster, M.E., Nat. Rev. Drug Discovery, 2004, vol. 3, no. 12, p. 1023.

    Article  CAS  Google Scholar 

  10. Raut, S.Y., Manne, A.S.N., Kalthur, G., et al., Curr. Pharm. Des., 2019, vol. 25, no. 4, p. 444.

    Article  CAS  Google Scholar 

  11. Mohanty, J., Bhasikuttan, A.C., Nau, W.M., et al., J. Phys. Chem. B, 2006, vol. 110, no. 10, p. 5132.

    Article  CAS  Google Scholar 

  12. Deygen, I.M., Egorov, A.M., and Kudryashova, E.V., Moscow Univ. Chem. Bull. (Engl. Transl.), 2016, vol. 71, no. 1, p. 387.

  13. Koester, L.S., Guterres, S.S., Le Roch, M., et al., Drug Dev. Ind. Pharm., 2001, vol. 27, no. 6, p. 533.

    Article  CAS  Google Scholar 

  14. Dsugi, N.F.A. and Elbashir, A.A., Spectrochim. Acta, Part A, 2015, vol. 137, p. 804.

    Article  CAS  Google Scholar 

  15. Le-Deygen, I.M., Skuredina, A.A., Uporov, I.V., et al., Anal. Bioanal. Chem., 2017, vol. 409, no. 27, p. 6451.

    Article  CAS  Google Scholar 

  16. Bobrovnik, S.A., J. Biochem. Biophys. Methods, 2004, vol. 93, no. 10, p. 2585.

    Google Scholar 

  17. Barri, T., Trtić-Petrović, T., Karlsson, M., et al., J. Pharm. Biomed. Anal., 2008, vol. 48, no. 1, p. 49.

    Article  CAS  Google Scholar 

  18. Crupi, V., Ficarra, R., Guardo, M., et al., J. Pharm. Biomed. Anal., 2007, vol. 44, no. 1, p. 110.

    Article  CAS  Google Scholar 

  19. Goswami, S. and Sarkar, M., New J. Chem., 2018, vol. 42, no. 18, p. 15146.

    Article  CAS  Google Scholar 

  20. Hasanvand, E. and Rafe, A., Int. J. Biol. Macromol., 2019, vol. 131, p. 60.

    Article  CAS  Google Scholar 

  21. Li, Z., Hong, H., Liao, L., et al., Colloids Surf., B, 2011, vol. 88, no. 1, p. 339.

    Article  CAS  Google Scholar 

  22. Loftsson, T. and Petersen, D.S., Drug Dev. Ind. Pharm., 1998, vol. 24, no. 4, p. 365.

    Article  CAS  Google Scholar 

  23. Van Doorslaer, X., Dewulf, J., van Langenhove, H., et al., Sci. Total Environ., 2014, vols. 500–501, p. 250.

    Article  CAS  Google Scholar 

  24. Langlois, M.H., Montagut, M., Dubost, J.P., and Grellet, J., Eur. J. Pharm. Biopharm. Anal., 2005, vol. 37, p. 389.

    Article  CAS  Google Scholar 

  25. Skuredina, A.A., Le-Deygen, I.M., and Kudryashova, E.V., Colloid J., 2018, vol. 80, no. 3, p. 312.

    Article  CAS  Google Scholar 

  26. Tóth, G., Jánoska, Á., Völgyi, G., et al., J. Inclusion Phenom. Macrocyclic Chem., 2013, vol. 77, nos. 1–4, p. 291.

    Article  CAS  Google Scholar 

  27. Misiuk, W. and Jozefowicz, M., J. Mol. Liq., 2015, vol. 202, p. 101.

    Article  CAS  Google Scholar 

  28. Skuredina, A.A., Le-Deygen, I.M., Uporov, I.V., et al., Colloid J., 2017, vol. 79, no. 5, p. 668.

    Article  CAS  Google Scholar 

  29. Dorofeev, V.L., Pharm. Chem. J., 2004, vol. 38, no. 12, p. 693.

    Article  CAS  Google Scholar 

  30. Sukhoverkov, K.V., Le-Deygen, I.M., Egorov, A.M., et al., Russ. J. Phys. Chem. B, 2018, vol. 12, no. 7, p. 1193.

    Article  CAS  Google Scholar 

  31. Yu, X., Zipp, G.L., and Ray Davidson, G.W., Pharm. Res., 1994, vol. 11, no. 4, p. 522.

    Article  CAS  Google Scholar 

  32. Sukhoverkov, K.V., et al., Sverkhkrit. Flyuidy,Teor. Prakt., 2017, vol. 12, no. 4, p. 66.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the UMNIK program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skuredina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skuredina, A.A., Kopnova, T.Y., Le-Deygen, I.M. et al. Physical and Chemical Properties of the Guest–Host Inclusion Complexes of Cyprofloxacin with β-Cyclodextrin Derivatives. Moscow Univ. Chem. Bull. 75, 218–224 (2020). https://doi.org/10.3103/S0027131420040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131420040069

Keywords:

Navigation