Log in

Results of Experimental and Theoretical Studies of the Possibilities of the Resonance Method of Ice Cover Destruction

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Based on experiments carried out: in ice basins; with large-scale models of hovercraft in the field; with full-scale hovercraft, as well as using theoretical dependencies for calculating the stress-strain state of the ice cover from the action of moving loads, the possibilities (patterns) of the resonant method of ice destruction, i.e., by excitation of resonant flexural-gravity waves (FGW), were studied. Its physical essence, the expediency of its implementation by a hovercraft are explained, the possible areas of effective use of this method are indicated. The results of the information review on the topic of the work are given, on the basis of which the purpose of the research is set. When describing the viscoelastic nature of the relationship between stresses and strains in ice, the Kelvin-Voigt law of deformation of an elastically retarded medium was used. The theoretical bending potential energy density of an infinite plate was taken as a criterion for the ice breaking capacity of FGW. In this case, the condition is used that when it reaches a certain value, complete (with the opening of cracks) destruction of ice occurs. The initial data for these calculations are taken from the performed experiments. Dependences are given that make it possible to determine the parameters of a load moving at a resonant speed (hovercraft parameters) sufficient to destroy an ice cover of a given thickness under given ice conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. D. O. Dutfild and D. E. Dickins, “Icebreakins trials with Bell Acгospace Voyageur ACV,” Can. Aeronaut. Space J. 20 (10), 471–474 (1974).

    Google Scholar 

  2. V. M. Kozin and V. L. Zemlyak, Physical Basis of the Destruction of the Ice Cover by the Resonance Method (IMiM FEB RAS, Komsomolsk-na-Amure, 2013) [in Russian].

  3. G. Ya. Sedov, “Transportation of objects of great weight on ice,” Vodn. Transp., No. 3/4, 146 (1926).

  4. B. N. Sergeev, “To the question of the magnitude of the load of river ice,” Vodn. Transp., No. 8/9, 300–301 (1926).

  5. S. A. Bernstein, Ice Railway Crossing (Work, Theory and Calculation of the Ice Layer) (Transpechat, Moscow, 1929) [in Russian].

    Google Scholar 

  6. N. N. Kashkin, Research of the Operation of Ice Airfields under Aircraft Load (ONTI NKTP, Moscow, 1935) [in Russian].

    Google Scholar 

  7. N. N. Zubov, Construction of Roads on Ice Cover (Gidrometeoizdat, Moscow, 1946) [in Russian].

    Google Scholar 

  8. N. N. Zubov, Arctic Ice (Izd-vo Glavsevmorputi, Moscow, 1945; U.S. Navy Electronics Laboratory, San Diego, Calif., 1963).

  9. G.R. Bregman and B. V. Proskuryakov, Ice Crossings (Gidrometeoizdat, Sverdlovsk, 1943) [in Russian].

    Google Scholar 

  10. I. S. Peschansky, Glaciology and Ice Engineering (Gidrometeoizdat, Leningrad, 1967) [in Russian].

    Google Scholar 

  11. F. Press, A. Crary, J. Oliver, and S. Katz, “Aircoupled flexural waves in floating ice,” Trans. Am. Geoph. Union 32 (2), 166–172 (1951).

    Article  ADS  Google Scholar 

  12. A. Crary, R. Cotell, and J. Oliver, “Geophysical studies in the Beaufort Sea, 1951,” Trans. Am. Geoph. Union 33, P. 211–216 (1952).

    Article  ADS  Google Scholar 

  13. A. Crary, “Scismic studies on fletcher,s ice icland-T-3,” Trans. Am. Geoph. Union 35 (2), 293–300 (1954). https://doi.org/10.1029/TR035i002p00293

    Article  ADS  Google Scholar 

  14. D. L. Anderson, “Preliminary results and review of sea ice elasticity and related studies,” Trans. Eng. Inst. Can. 2 (3), 2–8 (1958).

    Google Scholar 

  15. K. Hunkins, “Seismic studies of sea ice,” J. Geophys. Res. 65 (10), 3459–3472 (1960). https://doi.org/10.1029/JZ065i010p03459

    Article  ADS  Google Scholar 

  16. K. Hunkins, “Waves in the Arctic Ocean,” J. Geophys. Res. 67 (6), 2477–2489 (1962). https://doi.org/10.1029/JZ067i006p02477

    Article  ADS  Google Scholar 

  17. M. Sunberg-Falkenmark, Om Isbärighet Resultat av Belastningsförsök På is, Utförda av Samarbetsgruppen för Isbärighetsförsök 1959-61. Notiser Och Preliminiira Rapporter, Serie Hydrologi 1 (Sveriges Meteorologiska och Hydrologiska Institut, Stockholm, 1963).

  18. G. Robin and Q. De, “Wave propagation through fields of pack ice,” Phil. Trans. Roy. Soc. A. 225 (1057), 313–339 (1963). https://doi.org/10.1098/rsta.1963.0006

    Article  ADS  Google Scholar 

  19. A. D. Sytinskiy and V. P. Tripol’nikov, “Some results of investigations of the natural vibrations of ice fields of the central Arctic,” Bull. Acad. Sci. USSR, Geophys. Ser. No. 4, 370–374 (1964).

  20. L. Leschack and R. Haubrich, “Observations of waves on an ice-covered ocean,” J. Geophys. Res. 69 (18), 3815–3821 (1964). https://doi.org/10.1029/JZ069i018p03815

    Article  ADS  Google Scholar 

  21. L. W. Gold, “Use of ice covers for transportation,” Can. Geotech. J. 4, 170–181 (1971). https://doi.org/10.1139/t71-018

    Article  Google Scholar 

  22. V. N. Smirnov, “Some questions of full-scale investigation of deformations and stresses in the ice cover,” Tr. AANII 331, 133–140 (1976).

    Google Scholar 

  23. V. N. Smirnov, “Elastic bending waves in the ice sheet,” Tr. AANII 331, 117–123 (1976).

    Google Scholar 

  24. L. Gold, “Bearing capacity of ice covers,” Nat Res. Counc. Can. Techn. Mem., No. 121, 63–65 (1977). https://doi.org/10.1139/l76-028

  25. D. Eyre, “The flexural motion of a floating ice sheet induced by moving vehicles,” J. Glaciol. 19, 555–570 (1977). https://doi.org/10.3189/S0022143000215475

    Article  ADS  Google Scholar 

  26. D. Goodman and R. Holdsworth, “Continuous surface strain measurements on sea ice and on Erebus Glacier Tongue, McMurdo Sound, Antarctica,” Antarctic J. US 13, 67–70 (1978).

    Google Scholar 

  27. T. Takizawa, “Field studies on response of a floating sea ice sheet to a steadily moving load,” Contrib. Inst. Low Temp. Sci. 36, 31–76 (1978).

    Google Scholar 

  28. S. Beltaos, “Field studies on the response of floating ice sheets to moving loads,” Can. J. Civil Eng. 8, 1–8 (1981). https://doi.org/10.1139/l81-001

    Article  Google Scholar 

  29. T. Takizawa, “Deflection of a floating sea ice sheet induced by a moving load,” Cold Regions Sci. Techn. 11, 171–180 (1985).

    Article  Google Scholar 

  30. T. Takizawa, “Field studies on response of a floating sea ice sheet to a steadily moving load,” Contrib. Inst. Low Temp. Sci. 36, 31–76 (1987).

    Google Scholar 

  31. T. Takizawa, “Response of a floating sea ice sheet to a steadily moving load,” J. Geophys. Res. 93, 5100–5112 (1988). https://doi.org/10.1029/JC093iC05p05100

    Article  ADS  Google Scholar 

  32. V. A. Squire, W. H. Robinson, T. G. Haskell, and S. C. Moore, “Dynamic strain response of lake and sea ice to moving loads,” Cold Reg. Sci. Technol. 11, 123–139 (1985). https://doi.org/10.1016/0165-232X(85)90012-6

    Article  Google Scholar 

  33. V. A. Squire, P. J. Langhorne, W. H. Robinson, and A. J. Heine, Kiwi 131: an Antarctic Field Experiment to Study Strains and Acoustic Emission Generated by Loads Moving Over Sea Ice. Report Prepared for the Royal Society of London (RSL, London, 1986).

    Google Scholar 

  34. V. A. Squire, W. H. Robinson, P. J. Langhorne, and T. G. Haskell, “Vehicles and aircraft on floating ice,” Nature 333, 159–161 (1988).

    Article  ADS  Google Scholar 

  35. V. Squire, R. Hosking, A. Kerr, and P. Langhorne, Moving Loads on Ice Plates (Kluver Academic Publishers, Dordrecht, 1996), pp. 86–94.

    Book  Google Scholar 

  36. V. M. Kozin, V. D. Zhestkaya, A. V. Pogorelova, et al., Applied Problems of Ice Cover Dynamics (Akad. Estestvoznaniya, Moscow, 2008) [in Russian].

    Google Scholar 

  37. Cg. Greenhild, “Scattering on the thin ice,” The Lond. Ebinb. Dubl. Phil. Mag. J. Sci. 31 (181) (1916). https://doi.org/10.1080/14786440108635465

  38. S. S. Golushkevich, On Some Problems in the Theory of Ice Bending (Voenizdat, Leningrad, 1947) [in Russian].

    Google Scholar 

  39. F. Press and M. Ewing, “Propagation of elastic waves in a floating ice sheet,” Trans. Am. Geoph. Uni. 32 (5), 673–678 (1951).

    Article  Google Scholar 

  40. A. Crary, R. Cotell, and J. Oliver, “Geophysical studies in the Beaufort Sea, 1951,” Trans. Am. Geoph. Uni. 33, 211–216 (1952). https://doi.org/10.1029/TR033i002p00211

    Article  Google Scholar 

  41. D. E. Kheisin, Ice Cover Dynamics (Gidrometeoizdat, Leningrad, 1967) [in Russian].

  42. L. V. Cherkesov, “On the effect of ice cover and fluid viscosity on long waves,” Morsk. Gidrofiz. Issl., No. 3 (49), 50–56 (1970).

  43. D. H. Jen and S. C. Tang, “On the vibration of an elastic plate on an elastic foundation,” J. Sound Vib. 14 (1), 81–89 (1971). https://doi.org/10.1121/1.2144176

    Article  ADS  Google Scholar 

  44. S. F. Dotsenko, “On the influence of heterogeneity of liquid and ice cover on waves generated by a moving region of pressures,” Morsk. Gidrofiz. Issl., No 4 (67). C. 82–89 (1974).

  45. V.V. Bogorodsky and V.P. Gavrilo, Ice. Physical Properties. Modern Methods of Glaciology (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  46. A.V. Marchenko, “Bending-gravitational waves,” in Waves Dynamics on the Liquid Surface (Nauka, Moscow, 1999), pp. 65–111.

    Google Scholar 

  47. V. D. Zhestkaya and V. M. Kozin, Ice Breaking by Air-Cushion Vessels Using a Resonant Method (Dal’nauka, Vladivostok, 2003) [in Russian].

    Google Scholar 

  48. L. A. Tkacheva, “Surface wave diffraction on a floating elastic plate,” Fluid Dyn. 36, 776–789 (2001). https://doi.org/10.1023/A:1013077003346

    Article  MathSciNet  MATH  Google Scholar 

  49. L. A. Tkacheva, “Plane problem of surface wave diffraction on a floating elastic plate,” Fluid Dyn. 38, 465–481 (2003). https://doi.org/10.1023/A:1025106408548

    Article  MathSciNet  MATH  Google Scholar 

  50. L. A. Tkacheva, “Vibrations of a floating elastic plate due to periodic displacements of a bottom segment,” J. Appl. Mech. Tech. Phys. 46, 754–765 (2005). https://doi.org/10.1007/s10808-005-0132-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. F. Milinazzo, M. Shinbrot, and N.W. Evans, “A mathematical analysis of the steady response of floating ice to the uniform motion of a rectangular load,” J. Fluid Mech. 287, 287–295 (1995). https://doi.org/10.1017/S0022112095000917

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Wang, R. Hosking, and F. Milinazzo, “Time-dependent response of a floating viscoelastic plate to an impulsively started moving load,” J. Fluid Mech. 521, 295–317 (2004). https://doi.org/10.1017/S002211200400179X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. V. M. Kozin, V. D. Zhestkaya, A. V. Pogorelova, et al., Applied Problems of Ice Cover Dynamics (Akad. Estestvoznaniya, Moscow, 2008) [in Russian].

    Google Scholar 

  54. A. A. Korobkin, T. I. Khabakhpasheva, and A. A. Papin, Mathematical Models Of Snow-Ice Cover (AltGU, Barnaul, 2013) [in Russian].

  55. A. Korobkin, T. Khabakhpasheva, and A. Papin, “Waves propagating along a channel with ice cover,” Eur. J. Mech. B/Fluids 47, 166–175 (2014). https://doi.org/10.1016/j.euromechflu.2014.01.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. A. V. Pogorelova, V. M. Kozin, and A. A. Matyushina, “Stress-strain state of ice cover during aircraft takeoff and landing,” J. Appl. Mech. Tech. Phy. 56, 920–926 (2015). https://doi.org/10.1134/S002189441505020X

    Article  ADS  Google Scholar 

  57. E. A. Batyaev and T. I. Khabakhpasheva, “Hydroelastic waves in a channel covered with a free ice sheet,” Fluid Dyn. 50 (6), 775–788 (2015). https://doi.org/10.1134/S0015462815060071

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. K. A. Shishmarev, T. I. Khabahpasheva, and A. A. Korobkin, “Influence of hydrostatic and hydrodynamic pressures on ice sheet fluctuations,” in Proc. of All-Russian Scientific and Practical Conference “Mathematics-Altai Territory” (Altai Gos. Univ., Barnaul, 2015), pp. 87–91.

  59. I. Sturova and L. Tkacheva, “Oscillations of restricted ice cover under local dynamic action,” Polyarn. Mekh., No. 3. C. 997–1007 (2016).

    Google Scholar 

  60. L. A. Tkacheva, “Interaction of surface and flexural-gravity waves in ice cover with a vertical wall,” J. Appl. Mech. Tech. Phy. 54, 651–661 (2013). https://doi.org/10.1134/S0021894413040160

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. L. A. Tkacheva, “Behavior of a Semi-Infinite Ice Cover Under a Uniformly Moving Load,” J. Appl. Mech. Tech. Phy. 59, 258–272 (2018). https://doi.org/10.1134/S0021894418020098

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. L. A. Tkacheva, “Wave pattern due to a load moving on the free surface of a fluid along the edge of an ice sheet,” J. Appl. Mech. Tech. Phy. 60, 462–472 (2019). https://doi.org/10.1134/S0021894419030088

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. I. V. Sturova, “Action of periodic surface pressure on an ice cover in the vicinity of a vertical wall,” J. Appl. Mech. Tech. Phy. 58, 80–88 (2017). https://doi.org/10.1134/S0021894417010096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. I. V. Sturova, “Motion of an external load over a semi-infinite ice sheet in the subcritical regime,” Fluid Dyn. 53, 49–58 (2018). https://doi.org/10.1134/S0015462818010135

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. A. E. Bukatov, Waves in the Sea with a Floating Ice Cover (MGI, Sevastopol, 2017) [in Russian].

    Google Scholar 

  66. K. N. Zavialova, K. A. Shishmarev, and T. I. Khabakhpasheva, “Moving load in a channel covered with broken ice,” Izv. Altai Gos. Univ., No. 4(102), 73–78 (2018). https://doi.org/10.14258/izvasu(2018)4-13

  67. K. A. Shishmarev and T. I. Khabakhpasheva, “Unsteady deflection of ice cover in a frozen channel under a moving load,” Vych. Technol. 24 (2), 111–128 (2019). https://doi.org/10.25743/ICT.2019.24.2.010

    Article  Google Scholar 

  68. T. Khabakhpasheva, K. Shishmarev, and A. Korobkin, “Large-time response of ice cover to a load moving along a frozen channel,” Appl. Ocean Res. 86, 154–165 (2019). https://doi.org/10.1016/j.apor.2019.01.020

    Article  Google Scholar 

  69. V. L. Zemlyak, N. O. Baurin, and D. A. Kurbatskiy, “Laboratory Ice technology,” Vestn. Priamur. Gos. Univ. im. Sholom-Aleykhema, No. 1(12), 68-77 (2013).

  70. S. P. Timoshenko and S. Voinovskii-Kriger, Theory of Plates and Shells (McGraw-Hill, New York, 1959; Fizmatlit, Moscow, 1963).

  71. I. G. Petrov, “The choice of the most probable values of the mechanical characteristics of ice,” Tr. AANII 331, 4–41 (1976).

    Google Scholar 

  72. I. P. Butyagin, Strength of Ice and Ice Cover (Nauka, Novosibirsk, 1966) [in Russian].

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Institute of Mechanical Engineering and Metallurgy of the Khabarovsk Federal Research Center, Far Eastern Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kozin.

Additional information

Translated by I. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozin, V.M. Results of Experimental and Theoretical Studies of the Possibilities of the Resonance Method of Ice Cover Destruction. Mech. Solids 58, 671–684 (2023). https://doi.org/10.3103/S0025654423600101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600101

Keywords:

Navigation