Log in

A Finite Element-Meshless Hybrid Method (FEMLHM) of Elasticity Problem and Its Applications

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a finite element-meshless hybrid method (FEMLHM) is proposed to numerically simulate the elasticity problems. In the proposed FEMLHM, the nodal displacement components of a discrete structure are determined by the finite element method (FEM). The approximation formulations of displacement field, strain field and stress field are all developed using the radial basis point interpolation method (RPIM), which is one of the meshless approximation methods. Especially, a compactly supported and higher-order continuous radial basis function is used in the RPIM to ensure that all fields of displacement, stress and strain are continuous in the whole problem domain. Therefore, the proposed FEMLHM overcomes the limitation that both fields of stress and strain are not continuous in the FEM. In addition, the nodal displacements are calculated by FEM, which makes the proposed FEMLHM has higher computational efficiency than a meshless method. The displacement field and stress field of a cantilever beam problem are first numerically simulated to verify the proposed FEMLHM. Then it is used to numerically simulate the stress fields of a circular ring under uniform pressures. The simulation results are compared with both FEM and analytical solution to illustrate that the proposed FEMLHM can numerically simulate an elasticity problem more effectively and accurately than FEM. The proposed FEMLHM is easy to use, and has an application potential in a lot of engineering and science fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCE

  1. G. Hamid, X. Z. Wang, S. Swarna, et al., “A review of elastic–plastic contact mechanics,” Appl. Mech. Rev. 69, 060804 (2017). https://doi.org/10.1115/1.4038187

  2. X. Ma, B. Zhou, Y. J. Li, and S. F. Xue, “A Hermite interpolation element-free Galerkin method for elasticity problems,” J. Mech. Mater. Struct. 17, 75–95 (2022). https://doi.org/10.2140/JOMMS.2022.17.75

    Article  MathSciNet  Google Scholar 

  3. B. H. Wang, Y. Q. Ma, and Y. M. Cheng, “The improved complex variable element-free Galerkin method for bending problem of thin plate on elastic foundations” Int. J. Appl. Mech. 11, 1950105 (2019). https://doi.org/10.1142/S1758825119501059

  4. E. Kubacka and P. Ostrowski, “Heat conduction issue in biperiodic composite using Finite Difference Method,” Compos. Struct. 261, 113310 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2020.113310

  5. D. G. Taylor and S. Li, “Stable inversion of continuous-time nonlinear systems by finite-difference methods,” IEEE. Trans. Automat. Contr. 47, 537–542 (2002). https://doi.org/10.1109/9.989157

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Ma and G. Wei, “Numerical prediction of effective electro-elastic properties of three-dimensional braided piezoelectric ceramic composites,” Compos. Struct. 180, 420–428 (2017). https://doi.org/10.1016/j.compstruct.2017.07.081

    Article  Google Scholar 

  7. B. Zhou, Z. T. Kang, Z. Y. Wang and S. F. Xue, “Finite element method on shape memory alloy structure and its applications,” Chin. J. Mech. Eng-En. 32, 1–11 (2019). https://doi.org/10.1186/s10033-019-0401-3

    Article  Google Scholar 

  8. F. L. Sun, Y. P. Gong and C. Y. Dong, “A novel fast direct solver for 3D elastic inclusion problems with the isogeometric boundary element method,” J. Comput. Appl. Math. 77, 12904 (2020). https://doi.org/10.1016/j.cam.2020.112904

    Article  MathSciNet  MATH  Google Scholar 

  9. W. M. Elleithy and M. Tanaka, “Interface relaxation algorithms for BEM–BEM coupling and FEM–BEM coupling,” Comput. Methods. Appl. Mech. Eng. 192, 2977–2992 (2003). https://doi.org/10.1016/S0045-7825(03)00312-8

    Article  MATH  ADS  Google Scholar 

  10. H. C. Nguyen and T. Vo-Minh, “The use of the node-based smoothed finite element method to estimate static and seismic bearing capacities of shallow strip footings,” J. Rock Mech. Geotech. Eng. 14, 180–196 (2022). https://doi.org/10.1016/J.JRMGE.2021.11.005

    Article  Google Scholar 

  11. A. E. Demirbas, R. Ekici, M. Larakaya and A. Alkan, “Bone stress and damage distributions during dental implant insertion: a novel dynamic FEM analysis,” Comput. Methods. Biomech. Biomed. Eng. 25, 1381–1392 (2022). https://doi.org/10.1080/10255842.2021.2012765

    Article  Google Scholar 

  12. G. Antonio, “FEM analysis of the stiffness evolution in clustered composites and nanocomposites,” Mech. Adv. Mater. Struct. 29, 2423–2436 (2022). https://doi.org/10.1080/15376494.2020.1864070

    Article  Google Scholar 

  13. S. Adany, “Constrained shell finite element method for thin-walled members with holes,” Thin-Walled. Struct. 121, 41–56 (2017). https://doi.org/10.1016/j.tws.2017.09.021

    Article  Google Scholar 

  14. J. Yang, W. **e and Z. W. Zhang, “Exploring three-dimensional edge-based smoothed finite element method based on polyhedral mesh to study elastic mechanics problems,” **bei. Gongye Daxue. Xuebao. 39, 747–752 (2021). https://doi.org/10.1051/jnwpu/20213940747

    Article  Google Scholar 

  15. M. Alhazmi and S. E Ahmed, “FEM simulation of the entropy due to a buoyancy-induced flow confined novel prismatic enclosures using nano-encapsulated phase change materials,” Numer Heat. Transfer. Part. A. Appl. 83. 175–196 (2023). https://doi.org/10.1080/10407782.2022.2143974

    Article  ADS  Google Scholar 

  16. K. K. Zhang, W. B Deng and H. J. Wu, “A combined multiscale finite element method based on the LOD technique for the multiscale elliptic problems with singularities,” J. Comput. Phys. 469, 111540 (2022). https://doi.org/10.1016/J.JCP.2022.111540

  17. W. Y. Ming, C. Cao, F. Shen, et al., “Numerical and experimental study on WEDM of BN-AlN-TiB2 composite ceramics based on a fusion FEM model,” J. Manuf. Proc. 76, 138–154 (2022). https://doi.org/10.1016/j.jmapro.2022.02.013

    Article  Google Scholar 

  18. D. J. Burns and R. C. Batra, “First failure load of sandwich beams under transient loading using a space–time coupled finite element method,” Thin-Walled Struct. 173, 108960 (2022).  https://doi.org/10.1016/J.TWS.2022.108960

  19. X. Ma, B. Zhou and S. F. Xue, “A meshless Hermite weighted least-square method for piezoelectric structures,” Appl. Math. Comput. 400, 1–15 (2021). https://doi.org/10.1016/J.AMC.2021.126073

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Ma, B. Zhou and S. F. Xue, “A Hermite interpolation element-free Galerkin method for functionally graded structures,” Appl. Math. Comput. 419, 1–20 (2022). https://doi.org/10.1016/J.AMC.2021.126865

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. J. Deng, X. Q. He, L. G. Sun, et al., “An improved interpolating complex variable element free Galerkin method for the pattern transformation of hydrogel,” Eng. Anal. Bound. Elem. 113, 99–109 (2020). https://doi.org/10.1016/j.enganabound.2019.12.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Liu, G. F. Wei and Z. M. Wang, “Geometrically nonlinear analysis of functionally graded materials based on reproducing kernel particle method,” Int. J. Mech. Mater. Des. 16, 487–502 (2020). https://doi.org/10.1007/s10999-019-09484-8

    Article  Google Scholar 

  23. G. R. Liu, G. Y. Zhang, Y. T. Gu and Y. Y. Wang, “A meshfree radial point interpolation method (RPIM) for three-dimensional solids,” Comput. Mech. 36, 421–430 (2005). https://doi.org/10.1007/s00466-005-0657-6

    Article  MathSciNet  MATH  Google Scholar 

  24. X. B. Luo, D. M. Li, C. L. Liu and J. H. Pan, “Buckling analysis of variable stiffness composite plates with elliptical cutouts using an efficient RPIM based on naturally stabilized nodal integration scheme,” Compos. Struct. 302, 116243 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.116243

  25. S. W. Hu, R. Zhong, Q. S. Wang, et al., “A strong-form Chebyshev-RPIM meshless solution for free vibration of conical shell panels with variable thickness and fiber curvature,” Compos. Struct. 296, 115884 (2022). https://doi.org/10.1016/J.COMPSTRUCT.2022.115884

  26. E. I. Seblani and E.Shivanian, “New insight into meshless radial point Hermite interpolation through direct and inverse 2-D reaction-diffusion equation,” Eng. Comput. 37, 3605–3613 (2021). https://doi.org/10.1007/s00366-020-01020-z

    Article  Google Scholar 

  27. Q. **a, P. **ang, L. Z. Jiang, et al., “Bending and free vibration and analysis of laminated plates on Winkler foundations based on meshless layerwise theory,” Mech. Adv. Mater. Struct. 29, 6468–6187 (2022). https://doi.org/10.1080/15376494.2021.1972497

    Article  Google Scholar 

  28. S. H. Ren, V. Mahesh, G. G. Meng and L. M. Zhou, “Static responses of magneto-electro-elastic structures in moisture field using stabilized node-based smoothed radial point interpolation method,” Compos. Struct. 252, 112696 (2020). https://doi.org/10.1016/j.compstruct.2020.112696

  29. Y. Li, G. R. Liu, Z. Q. Feng, et al., “A node-based smoothed radial point interpolation method with linear strain fields for vibration analysis of solids,” Eng. Anal. Boundary. Elem. 114, 8–22 (2020). https://doi.org/10.1016/j.enganabound.2020.01.018

    Article  MathSciNet  MATH  Google Scholar 

  30. L. M. Zhou, S. H. Ren, G. W. Meng, and Z. C. Ma, “Node-based smoothed radial point interpolation method for electromagnetic-thermal coupled analysis,” Appl. Math. Model. 78, 841–862 (2020). https://doi.org/10.1016/j.apm.2019.09.047

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Leblanc, A. Malesys, and A. Lavie, “Compactly supported radial basis functions for the acoustic 3D eigenanalysis using the particular integral method,” Eng. Anal. Boundary. Elem. 36, 520–526 (2012). https://doi.org/10.1016/j.enganabound.2011.10.007

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Deng, X. L. Chen, B. Y. Yang, et al., “Finite element analysis on the residual bearing capacity of axially preloaded tubular T-joints subjected to impacts,” Struct. 31, 286–304 (2021). https://doi.org/10.1016/J.ISTRUC.2021.02.002

    Article  Google Scholar 

  33. G. R. Liu and Y. T. Gu, An Introduction to Meshfree Methods and Their Programming (Springer, Dordrecht, 2005).

    Google Scholar 

Download references

Funding

The authors of this paper acknowledge the supports from the Independent Innovation Research Program of China University of Petroleum (East China) (Grant No. 27RA2215005) and the National Key Research and Development Program of China (grant no. 2017YFC0307604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Zhang, C. & Zhao, F. A Finite Element-Meshless Hybrid Method (FEMLHM) of Elasticity Problem and Its Applications. Mech. Solids 58, 852–871 (2023). https://doi.org/10.3103/S0025654422601719

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422601719

Keywords:

Navigation