Log in

Numerical Calibration of Stress Intensity Factor for Transversely Isotropic Central Cracked Brazilian Disk

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

To obtain the stress intensity factors (SIFs) of transversely isotropic central cracked Brazilian disk (CCBD), an anisotropy coefficient f is introduced based on the isotropic analytical formula. The coefficient f is related to the anisotropy orientation β, the anisotropy ratio of Young’s modulus ξ, and the apparent shear modulus η. The comprehensive calibration of f is accomplished by the finite element method. Then the formulae for mode I and II SIFs are obtained by fitting f to the analytical solutions of the isotropic CCBD, which realizes the generalization and application of the formulae in transversely isotropic rocks based on the isotropic condition. The new formulae presented in this paper can calculate the SIFs for any given elastic modulus, crack length, anisotropy orientation and certain loading angle range (0°–25°). The results show that the relative errors between the formula and the numerical simulation results are within 5%, and the relative errors with other researches are within 2.8%. Both the SIFs and the correlation coefficients M1(β), M2(β), and N1(β) show a variation of sine or cosine concerning the anisotropy orientation β. And the influence of ξ and η on SIFs can be negligible by adjusting β to some specific angles given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. Dutler, M. Nejati, B. Valley, Et Al., “on The Link Between Fracture Toughness, Tensile Strength, And Fracture Process Zone In Anisotropic Rocks,” Eng. Fract. Mech. 201, 56–79 (2018). https://doi.org/10.1016/j.engfracmech.2018.08.017

    Article  Google Scholar 

  2. N.v. Cherdantsev, “approach To Constructing A Hydraulic Fracture Trajectory In A Rock Mass Near A Mine Working,” Mech. Solids 55, 1372–1391 (2020). https://doi.org/10.3103/s0025654420080063

    Article  ADS  MATH  Google Scholar 

  3. N.v. Cherdantsev And S.v. Cherdantsev, “analysis Of The State For A Coal Massif Enclosing In-seam Working And A Geological Discontinuity,” Mech. Solids 53, 211–220 (2018). https://doi.org/10.3103/s0025654418020127

    Article  ADS  Google Scholar 

  4. G.r.irwin, “analysis Of Stresses And Strains Near The End Of A Crack Traversing A Plate,” Appl. Mech. 361–364 (1957). https://doi.org/10.1115/1.4011547

  5. C.s. Chen, E. Pan And B. Amadei, “determination Of Deformability And Tensile Strength Of Anisotropic Rock Using Brazilian Tests,” Int. J. Rock. Mech. Min. 35, 43–61 (1998). https://doi.org/10.1016/s0148-9062(97)00329-x

    Article  Google Scholar 

  6. Y.-c. Chou And C.-s. Chen, “determining Elastic Constants Of Transversely Isotropic Rocks Using Brazilian Test And Iterative Procedure,” Int. J. Numer. Anal. Methods Geomech. 32, 219–234 (2008). https://doi.org/10.1002/nag.619

    Article  MATH  Google Scholar 

  7. L. Federici, A. Piva, And E. Viola, “crack Edge Displacement And Elastic Constant Determination For An Orthotropic Material,” Theor. Appl. Fract. Mech. 31, 173–187 (1999). https://doi.org/10.1016/s0167-8442(99)00012-9

    Article  Google Scholar 

  8. A. Aminzadeh, A. Fahimifar, And M. Nejati, “on Brazilian Disk Test For Mixed-modei/iifracture Toughness Experiments Of Anisotropic Rocks,” Theor. Appl. Fract. Mech. 102, 222–238 (2019). https://doi.org/10.1016/j.tafmec.2019.04.010

    Article  Google Scholar 

  9. M. Nejati, A. Aminzadeh, M.o. Saar, Et Al., “modified Semi-circular Bend Test To Determine The Fracture Toughness Of Anisotropic Rocks,” Eng. Fract. Mech. 213, 153–171 (2019). https://doi.org/10.1016/j.engfracmech.2019.03.008

    Article  Google Scholar 

  10. M. Nejati, A. Aminzadeh, F. Amann, Et Al., T. Driesner, “mode I Fracture Growth In Anisotropic Rocks: Theory And Experiment,” Int. J. Solids Struct. 195, 74–90 (2020). https://doi.org/10.1016/j.ijsolstr.2020.03.004

    Article  Google Scholar 

  11. M. Nejati, A. Aminzadeh, T. Driesner, Et Al., “on The Directional Dependency Of Mode I Fracture Toughness In Anisotropic Rocks,” Theor. Appl. Fract. Mech. 107, (2020). https://doi.org/10.1016/j.tafmec.2020.102494

  12. M. Nejati, B. Bahrami, M.r. Ayatollahi, Et Al., “on The Anisotropy Of Shear Fracture Toughness In Rocks,” Theor. Appl. Fract. Mech. 113, (2021). https://doi.org/10.1016/j.tafmec.2021.102946

  13. M. Nejati, S. Ghouli, And M.r. Ayatollahi, “crack Tip Asymptotic Fields In Anisotropic Planes: Importance Of Higher Order Terms,” Appl. Math. Model. 91, 837-862 (2021). https://doi.org/10.1016/j.apm.2020.09.025

    Article  MathSciNet  MATH  Google Scholar 

  14. M.h.b. Nasseri, G. Grasselli, And B. Mohanty, “fracture Toughness And Fracture Roughness In Anisotropic Granitic Rocks,” Rock. Mech. Rock. Eng. 43, 403–415 (2009). https://doi.org/10.1007/s00603-009-0071-z

    Article  ADS  Google Scholar 

  15. M.r. Chandler, P.g. Meredith, N. Brantut, Et Al., “fracture Toughness Anisotropy In Shale,” J. Geophys. Res.: Solid Earth. 121, 1706–1729 (2016). https://doi.org/10.1002/2015jb012756

    Article  ADS  Google Scholar 

  16. C.c. Ke, C.s. Chen, And C.h. Tu, “determination Of Fracture Toughness Of Anisotropic Rocks By Boundary Element Method,” Rock. Mech. Rock. Eng. 41, 509–538 (2006). https://doi.org/10.1007/s00603-005-0089-9

    Article  ADS  Google Scholar 

  17. M.c. Baik, S.h. Choi, J.s. Hawong, Et Al., “determination Of Stress-intensity Factors By The Method Of Caustics In Anisotropic Materials,” Exp. Mech. 35, 137–143 (1995). https://doi.org/10.1007/bf02326471

    Article  Google Scholar 

  18. O. Demir, “analytical Investigation On Prediction Of Fatigue Crack Growth Lives Of Cracked Nonhomogeneous Materials,” J Mech. Mater. Struct. 16, 429–440 (2021). https://doi.org/10.2140/jomms.2021.16.429

    Article  Google Scholar 

  19. M. Nagai, T. Ikeda, And N. Miyazaki, “stress Intensity Factor Analysis Of A Three-dimensional Interface Crack Between Dissimilar Anisotropic Materials,” Eng. Fract. Mech. 74, 2481–2497 (2007). https://doi.org/10.1016/j.engfracmech.2006.12.027

    Article  MATH  Google Scholar 

  20. J.f. Dwyer And E. Pan, “edge Function Analysis Of Stress Intensity Factors In Cracked Anisotropic Plates,” Int. J. Fract. 72, 327–342 (1995). https://doi.org/10.1007/bf00040371

    Article  Google Scholar 

  21. C.s. Chen, E. Pan, And B. Amadei, “fracture Mechanics Analysis Of Cracked Discs Of Anisotropic Rock Using The Boundary Element Method,” Int. J. Rock. Mech. Min. 35, 195–218 (1998). https://doi.org/10.1016/s0148-9062(97)00330-6

    Article  Google Scholar 

  22. J.h. Kim And G.h. Paulino, “mixed-mode Fracture Of Orthotropic Functionally Graded Materials Using Finite Elements And The Modified Crack Closure Method,” Eng. Fract. Mech. 69, 1557–1586 (2002). https://doi.org/10.1016/s0013-7944(02)00057-7

    Article  Google Scholar 

  23. J.h. Kim And G.h. Paulino, “mixed-mode J-integral Formulation And Implementation Using Graded Elements For Fracture Analysis Of Nonhomogeneous Orthotropic Materials,” Mech. Mater. 35, 107–128 (2003). https://doi.org/10.1016/s0167-6636(02)00159-x

    Article  Google Scholar 

  24. A. De Klerk, A.g. Visser, And A.a. Groenwold, “lower And Upper Bound Estimation Of Isotropic And Orthotropic Fracture Mechanics Problems Using Elements With Rotational Degrees Of Freedom,” Commun. Numer. Meth. En. 24, 335–353 (2008). https://doi.org/10.1002/cnm.973

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Banks-sills, I. Hershkovitz, P.a. Wawrzynek, Et Al., “methods For Calculating Stress Intensity Factors In Anisotropic Materials: Part I—z=0 Is A Symmetric Plane,” Eng. Fract. Mech. 72, 2328–2358 (2005). https://doi.org/10.1016/j.engfracmech.2004.12.007

    Article  Google Scholar 

  26. L. Banks-sills, P.a. Wawrzynek, B. Carter, Et Al., “methods For Calculating Stress Intensity Factors In Anisotropic Materials: Part Ii—arbitrary Geometry,” Eng. Fract. Mech. 74, 1293–1307 (2007). https://doi.org/10.1016/j.engfracmech.2006.07.005

    Article  Google Scholar 

  27. G. Dhondt, “mixed-mode K-calculations In Anisotropic Materials,” Eng. Fract. Mech. 69, 909–922 (2002). https://doi.org/10.1016/s0013-7944(01)00127-8

    Article  Google Scholar 

  28. W. Xu, C. Zhang, X.r. Wu, Et Al., “weight Function Method And Its Application For Orthotropic Single Edge Notched Specimens,” Compos. Struct. 252, (2020). https://doi.org/10.1016/j.compstruct.2020.112695

  29. Q.-d. Zeng, J. Yao, And J. Shao, “numerical Study Of Hydraulic Fracture Propagation Accounting For Rock Anisotropy,” J. Pet. Sci. Eng. 160, 422–432 (2018). https://doi.org/10.1016/j.petrol.2017.10.037

    Article  Google Scholar 

  30. E. Mohtarami, A. Baghbanan, H. Hashemolhosseini, Et Al., “fracture Mechanism Simulation Of Inhomogeneous Anisotropic Rocks By Extended Finite Element Method,” Theor. Appl. Fract. Mech. 104, (2019). https://doi.org/10.1016/j.tafmec.2019.102359

  31. H. Zarrinzadeh, M.z. Kabir, And A. Varvani-farahani, “static And Dynamic Fracture Analysis Of 3d Cracked Orthotropic Shells Using Xfem Method,” Theor. Appl. Fract. Mech. 108, (2020). https://doi.org/10.1016/j.tafmec.2020.102648

  32. M.r. Ayatollahi, M. Nejati, And S. Ghouli, “crack Tip Fields In Anisotropic Planes: A Review,” Int. J. Fract. (2021). https://doi.org/10.1007/s10704-021-00559-2

  33. R. Cappello, G. Pitarresi, J. Xavier, Et Al., “experimental Determination Of Mode I Fracture Parameters In Orthotropic Materials By Means Of Digital Image Correlation,” Theor. Appl. Fract. Mech. 108, (2020). https://doi.org/10.1016/j.tafmec.2020.102663

  34. S.k. Khanna And A. Shukla, “development Of Stress-field Equations And Determination Of Stress Intensity Factor During Dynamic Fracture Of Orthotropic Composite-materials,” Eng. Fract. Mech. 47, 345–359 (1994). https://doi.org/10.1016/0013-7944(94)90092-2

    Article  Google Scholar 

  35. S. Samarasinghe And D. Kulasiri, “stress Intensity Factor Of Wood From Crack-tip Displacement Fields Obtained From Digital Image Processing,” Silva. Fenn. 38, 267–278 (2004).

    Article  Google Scholar 

  36. A. Shukla, B.d. Agarwal, And B. Bhushan, “determination Of Stress Intensity Factor In Orthotropic Composite-materials Using Strain-gauges,” Eng. Fract. Mech. 32, 469–477 (1989). https://doi.org/10.1016/0013-7944(89)90318-4

    Article  Google Scholar 

  37. D. Chakraborty, K.s.r.k. Murthy, And D. Chakraborty, “a New Single Strain Gage Technique For The Accurate Determination Of Mode I Stress Intensity Factor In Orthotropic Composite Materials,” Eng. Fract. Mech. , 142–154 (2014). https://doi.org/10.1016/j.engfracmech.2014.04.011

  38. D. Chakraborty, D. Chakraborty, And K.s.r.k. Murthy, “a Strain Gage Technique For The Determination Of Mixed Mode Stress Intensity Factors Of Orthotropic Materials,” Compos. Struct. 160, 185–194 (2017). https://doi.org/10.1016/j.compstruct.2016.10.044

    Article  Google Scholar 

  39. D. Chakraborty, K.s.r.k. Murthy, And D. Chakraborty, “experimental Determination Of Mode I Stress Intensity Factor In Orthotropic Materials Using A Single Strain Gage,” Eng. Fract. Mech. 173, 130–145 (2017). https://doi.org/10.1016/j.engfracmech.2017.01.002

    Article  Google Scholar 

  40. Y. Mikami, M. Kurashige, And K. Imai, “mechanical Response Of A Water-saturated Core Sample Under Opposite Diametrical Loadings,” Acta. Mech. 158, 15–32 (2002). https://doi.org/10.1007/bf01463166

    Article  MATH  Google Scholar 

  41. S.k. Kourkoulis, C.f. Markides, And J.a. Hemsley, “frictional Stresses At The Disc-jaw Interface During The Standardized Execution Of The Brazilian Disc Test,” Acta Mechanica, 224, 255–268 (2013). https://doi.org/10.1007/s00707-012-0756-3

    Article  MATH  Google Scholar 

  42. S. Dong, Y. Wang, And Y. **a, “stress Intensity Factors For Central Cracked Circular Disk Subjected To Compression,” Eng. Fract. Mech. 71, 1135–1148 (2004). https://doi.org/10.1016/s0013-7944(03)00120-6

    Article  Google Scholar 

  43. B. Hf, “a Novel Principle For The Computation Of Stress Intensity Factors,” Z. Angew. Math. Mech. 529–546 (1970).

  44. J.r. Rice, “some Remarks On Elastic Crack-tip Stress Fields,” Int. J. Solids Struct. 8, 751–758 (1972). https://doi.org/10.1016/0020-7683(72)90040-6

    Article  MATH  Google Scholar 

  45. T. Fett, “stress Intensity Factors And T-stress For Internally Cracked Circular Disks Under Various Boundary Conditions,” Eng. Fract. Mech. 68, 1119–1136 (2001). https://doi.org/10.1016/s0013-7944(01)00025-x

    Article  Google Scholar 

  46. G.c. Sih, P.c. Paris And G.r. Irwin, “on Cracks In Rectilinearly Anisotropic Bodies,” Int. J. Fract. Mech. 1, 189–203 (1965). https://doi.org/10.1007/bf00186854

    Article  Google Scholar 

  47. T.c.t. Ting, Anisotropic Elasticity: Theory And Applications, (Oxford Uni. Press, New York, 1996).

    Book  Google Scholar 

  48. J. Claesson And B. Bohloli, “brazilian Test: Stress Field And Tensile Strength Of Anisotropic Rocks Using An Analytical Solution,” Int. J. Rock. Mech. Min. 39, 991–1004 (2002). https://doi.org/10.1016/s1365-1609(02)00099-0

    Article  Google Scholar 

  49. S. Dong, “theoretical Analysis Of The Effects Of Relative Crack Length And Loading Angle On The Experimental Results For Cracked Brazilian Disk Testing,” Eng. Fract. Mech. 75, 2575–2581 (2008).

    Article  Google Scholar 

  50. G.e. Exadaktylos, “on The Constraints And Relations Of Elastic Constants Of Transversely Isotropic Geomaterials,” Int. J. Rock. Mech. Min. 38, 941–956 (2001). https://doi.org/10.1016/j.engfracmech.2007.09.008

    Article  Google Scholar 

  51. Z. Gan, X. Pan, H. Tang, Et Al., “experimental Investigation On Mixed Mode I-iii Fracture Characteristics Of Sandstone Corroded By Periodic Acid Solution,” Theor. Appl. Fract. Mech. 114, (2021). https://doi.org/10.1016/j.tafmec.2021.103034

  52. M. Nejati, A. Paluszny, And R.w. Zimmerman, “on The Use Of Quarter-point Tetrahedral Finite Elements In Linear Elastic Fracture Mechanics,” Eng. Fract. Mech. 144, 194–221 (2015). https://doi.org/10.1016/j.engfracmech.2015.06.055

    Article  Google Scholar 

  53. X. Pan, J. Huang, Z. Gan, Et Al., “investigation On Mixed-mode Ii-iii Fracture Of The Sandstone By Using Eccentric Cracked Disk,” Theor. Appl. Fract. Mech. 115, (2021). https://doi.org/10.1016/j.tafmec.2021.103077

  54. X. Pan, J. Huang, Z. Gan, Et Al., “analysis Of Mixed-mode I/ii/iii Fracture Toughness Based On A Three-point Bending Sandstone Specimen With An Inclined Crack,” Appl. Sci-basel. 11, (2021). https://doi.org/10.3390/app11041652

  55. J. Huang, J. Li, X. Pan, Et Al., “numerical Investigation On Mixed Mode (I-ii) Fracture Propagation Of Ccbd Specimens Under Confining Pressure,” Int. J. Appl. Mech. 12, (2020). https://doi.org/10.1142/s1758825120501112

Download references

Funding

This work was supported by the National Natural Science Foundation of China (nos. 11872042 and 12132019), and China Postdoctoral Science Foundation (2019M653395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Dong.

Appendices

Nomenclature

a

Half crack length

B

Disk thickness

E, E '

Young’s moduli within and normal to the isotropy plane

f

Anisotropy coefficient defined as the ratio of anisotropic SIFs to isotropic SIFs

FI, FII

Normalized stress intensity factors

G, G '

Shear moduli within and normal to the plane of isotropy

\(G_{{{\text{SV}}}}^{'}\)

Transverse shear modulus approximated from the Saint-Venant relation

h1(x, a), h2(x, a)

Weight function

k c

The correction factor under different relative crack lengths and anisotropy orientation

KI, KIC

Mode I stress intensity factor and fracture toughness

KII, KIIC

Mode II stress intensity factor and fracture toughness

P

Concentrated force

r, θ

Polar coordinate located at the center of uncracked disk

R

Disk radius

x, y

Oriented along with the horizontal and vertical directions

x ', y '

Parallel to and normal to the transverse isotropic plane

α

Relative crack length

β

The angle between the transversely isotropic plane and the horizontal plane

γ

The influence coefficient, ∆FII/∆ξ

η

Anisotropy ratio of apparent shear modulus, G'/\(G_{{{\text{SV}}}}^{'}\)

ξ

Anisotropy ratio of Young’s modulus, E/E'

τθ, τrθ

Normal and tangential stress distribution for uncracked disk

υ, υ '

Poisson’s ratio within and normal to the plane of isotropy

Abbreviations

BEM

Boundary element method

CCBD

Central cracked Brazilian disk

COD

Crack opening displacement

FEM

Finite element method

ISRM

International Society for Rock Mechanics

QPES

Quarter point element stress

SCB

Semi-circular bend

SIF

Stress intensity factor

XFEM

Extended finite element method

APPENDIX A.

Table A1. Correction factors under different relative crack length α and anisotropy orientation β (θ = 0)
Table A2. Correction factors under different relative crack length α and anisotropy orientation β (θ = 5°)
Table A3. Correction factors under different relative crack length α and anisotropy orientation β (θ = 10°)
Table A4. Correction factors under different relative crack length α and anisotropy orientation β (θ = 15°)
Table A5. Correction factors under different relative crack length α and anisotropy orientation β (θ = 20°)
Table A6. Correction factors under different relative crack length α and anisotropy orientation β (θ = 25°)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Tang, H.Z., Gan, Z.Q. et al. Numerical Calibration of Stress Intensity Factor for Transversely Isotropic Central Cracked Brazilian Disk. Mech. Solids 57, 835–855 (2022). https://doi.org/10.3103/S0025654422040082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422040082

Keywords:

Navigation