Log in

Study Of Symmetrical And Anti-Symmetrical Edge Waves In Double Porosity Semi-Infinite Thin Plate – Plane Stress Problem

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This paper investigates the propagation of waves propagating near the edges of semi-infinite thin double porosity plate in the frame work of Biot’s theory. The constitutive equations in the case of plane stress conditions are derived, and discussed. Frequency equations are derived for symmetric and anti-symmetric waves. It is obtained that the particle trajectory in the plane of plate is ellipse. Finally, the numerical results are computed for frequency against wavenumber, and then compared with that of the single porosity plate of the same material. It is seen that the phase velocity in the case of single porosity is higher than that of the double porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. A. Biot, “Theory of propagation of elastic waves in a saturated porous solid, I, Low-frequency range,” J. Acoust. Soc. Am. 28, 168–178 (1956). https://doi.org/10.1121/1.1908239

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Malla Reddy and M. Tajuddin, “Edge waves in poroelastic plate under plane stress conditions,” J. Acoust. Soc. Am. 114 (1), 185–193 (2003). https://doi.org/10.1121/1.1569258

    Article  Google Scholar 

  3. M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” J. Appl. Phys. 33, 1482–1498 (1962). https://doi.org/10.1063/1.1728759

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G. I. Barenblatt, Iu. P. Zheltov, and I. N. Kochina “Basic concepts in the theory of seepage of liquids in fissured rocks [strata],” J. Appl. Math. Mech. 24 (5), 1286–1303 (1960). https://doi.org/10.1016/0021-8928(60)90107-6

    Article  MATH  Google Scholar 

  5. J. E. Warren and P. J. Root, “The behavior of naturally fractured reservoirs,” SPE J. 3, 245–255 (1963). doi: https://doi.org/https://doi.org/10.2118/426-PA

    Article  Google Scholar 

  6. J. Dvorkin and A. Nur, “Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms,” Geophys. 58, 524–533 (1993). https://doi.org/10.1190/1.1443435

    Article  Google Scholar 

  7. L. Thomsen, “Elastic anisotropy due to aligned cracks in porous rock1,” Geophys. Prosp. 43, 805-829 (1995). https://doi.org/https://doi.org/10.1111/j.1365-2478.1995.tb00282.x

    Article  ADS  Google Scholar 

  8. R. K. Wilson and E. C. Aifantis, “A double porosity model for acoustic wave propagation in fractured-porous rock,” Int. J. Eng. Sci. 22 (8–10), 1209–1217 (1984). https://doi.org/10.1016/0020-7225(84)90124-1

    Article  MATH  Google Scholar 

  9. M. Bai, D. Elsworth, and J. -C. Roegiers, “Modelling of naturally fractured reservoirs using deformation dependent flow mechanism,” Int. J. Rock Mech. Mining Sci. Geomech. Abs. 30 (7), 1185-1191 (1993). https://doi.org/10.1016/0148-9062(93)90092-R

    Article  Google Scholar 

  10. J. G. Berryman and H. F. Wang, “The elastic coefficients of double porosity models for fluid transport in jointed rock,” J. Geophys. Res. 100, 34611–34627 (1995). https://doi.org/10.1029/95JB02161

    Article  Google Scholar 

  11. J. G. Berryman and H. F. Wang, “Elastic wave propagation and attenuation in a double-porosity dual-permeability medium,” Int. J. Rock Mech. Min. Sci. 37 (1–2), 63–78 (2000). https://doi.org/10.1016/S1365-1609(99)00092-1

  12. J. M. Carcione, F. Cavallini, J. E. Santos, et al., “Wave propagation in partially-saturated porous media: Simulation of a second slow wave,” Wave Motion 39, 227–240 (2004). https://doi.org/10.1016/j.wavemoti.2003.10.001

    Article  MathSciNet  MATH  Google Scholar 

  13. J. E. Santos, J. M. Corbero, and J. Douglas Jr. “Static and dynamic behaviour of a porous solid saturated by a two-phase fluid,” J. Acoust. Soc. Am. 87, 1428–1438 (1990). https://doi.org/10.1121/1.399439

    Article  ADS  Google Scholar 

  14. J. E. Santos, J. Douglas Jr., J. M. Corbero, and O. M. Lovera, “A model for wave propagation in a porous medium saturated by a two-phase fluid,” J. Acoust. Soc. Am. 87, 1439–1448 (1990). https://doi.org/10.1121/1.399440

    Article  ADS  MathSciNet  Google Scholar 

  15. K. T. Lewallen and H. F. Wang, “Consolidation of a double-porosity medium,” Int. J. Solids Struct. 35, 4845–4867 (1998). https://doi.org/10.1016/S0020-7683(98)00097-3

    Article  MATH  Google Scholar 

  16. M. D. Sharma, “Constitutive relations for wave propagation in a double porosity solids,” Mech. Mater. 91, 263–276 (2015). https://doi.org/10.1016/j.mechmat.2015.08.005

    Article  ADS  Google Scholar 

  17. Z. -J. Dai, Z.-B Kuang, and S.-X. Zhao, “Reflection and transmission of elastic waves from the interface of fluid-saturated porous solid and a double porosity solid,” Trans. Porous Media 65, 237–264 (2006). https://doi.org/10.1007/s11242-005-6084-5

    Article  MathSciNet  Google Scholar 

  18. Z.-J. Dai, Z.-B Kuang, and S.-X. Zhao, “Rayleigh waves in a double porosity half-Space,” J. Sound Vib. 298, 319–332 (2006). https://doi.org/10.1016/j.jsv.2006.05.035

    Article  ADS  Google Scholar 

  19. J. Ba, J. M. Carcione, and J. X. Nie, “Biot-Rayleigh theory of wave propagation in double-porosity media,” J. Geophys. Res. 116, B06202 (2011). https://doi.org/10.1029/2010JB008185

  20. J. Ba, W. Xu, L. Fu, et al., “Rock an elasticity due to patchy-saturation and fabric heterogeneity: A double double-porosity model of wave propagation,” J. Geophys. Res. -Solid Earth 122 (3), 1949–1976 (2017). https://doi.org/10.1002/2016JB013882

    Article  ADS  Google Scholar 

  21. L. Zhang, J. Ba, and J. M. Carcione, “Wave propagation in infinituple-porosity media,” J. Geophys. Res. – Solid Earth 126 (4), e2020JB021266 (2021). https://doi.org/10.1029/2020JB021266

  22. E. Wang, J. Ba, J. M. Carcione, et al., “Effect of local fluid flow on the reflection and transmission of elastic waves at an interface between an elastic solid and a double-porosity medium,” Geophys. 85 (4), T237–T256 (2020). https://doi.org/10.1190/geo2019-0294.1

    Article  ADS  Google Scholar 

  23. Q. Zhang, X. Yan, and J. Shao, “Fluid flow through anisotropic and deformable double porosity media with ultra-low matrix permeability: A continuum framework,” J. Pet. Sci. Eng. 200, 108349 (2021). https://doi.org/10.1016/j.petrol.2021.108349

  24. Q. Zhang and R. I. Borja, “Poroelastic coefficients for anisotropic single and double porosity media,” Acta Geotech. 16, 3013–3025 (2021). https://doi.org/10.1007/s11440-021-01184-y

    Article  Google Scholar 

  25. Larry A. Taber, “A therory for transverse deflection of poroelastic plates,” J. Appl. Mech. 59 (3), 628–634 (1992). https://doi.org/10.1115/1.2893770

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Venkanna or P. Malla Reddy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkanna, D., Malla Reddy, P. Study Of Symmetrical And Anti-Symmetrical Edge Waves In Double Porosity Semi-Infinite Thin Plate – Plane Stress Problem. Mech. Solids 57, 629–643 (2022). https://doi.org/10.3103/S0025654422030219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422030219

Keywords:

Navigation