Log in

From the periphery to the brain: Wiring the olfactory system

  • Communication
  • Translational Neuroscience
  • Published:
Translational Neuroscience

Abstract

The olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polak E. T., Trotier D., Baliguand E., Odor similarities in structurally related odorants, Chem. Sens. Flav., 1978, 3, 369–380

    Article  CAS  Google Scholar 

  2. Døving K. B., Trotier D., Structure and function of the vomeronasal organ, J. Exp. Biol., 1998, 201, 2913–2925

    PubMed  Google Scholar 

  3. Dulac C., Torello A. T., Molecular dandection of pheromone signals in mammals, from genes to behaviour, Nat. Rev. Neurosci., 2003, 4, 551–562

    Article  PubMed  CAS  Google Scholar 

  4. Meredith M., Graziadei P. P., Graziadei G. A., Rashotti M. E., Smith J. C., Olfactory function after bulbectomy, Science, 1983, 222, 1254–1255

    Article  PubMed  CAS  Google Scholar 

  5. Spehr M., Spehr J., Ukhanov K., Kelliher K. R., Leinders-Zufall T., Zufall F., Parallel processing of social signals by the mammalian main and accessory olfactory systems, Cell. Mol. Life Sci., 2006, 63, 1476–1484

    Article  PubMed  CAS  Google Scholar 

  6. Trinh K., Storm D. R., Vomeronasal organ dandects odorants in absence of signaling through main olfactory epithelium, Nat. Neurosci., 2003, 6, 519–525

    PubMed  CAS  Google Scholar 

  7. Lin D. M., Wang F., Lowe G., Gold G. H., Axel R., Ngai J. et al., Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity, Neuron, 2000, 26, 69–80

    Article  PubMed  CAS  Google Scholar 

  8. Golgi C., Sulla fine struttura dei bulbi olfattori, Rivista Sperimentale di Freniatria e di Medicina Legale, Regio-Emilia, 1875

  9. Cajal S. R., Origen y terminación de las fibras nerviosas olfatorias, Gac. San. Barcelona, 1890

  10. Cajal S. R., La textura del sistema nervioso del hombre y los vertebrados, Moya, Madrid, 1904

    Google Scholar 

  11. Chess A., Simon I., Cedar H., Axel R., Allelic inactivation regulates olfactory receptor gene expression, Cell, 1994, 78, 823–834

    Article  PubMed  CAS  Google Scholar 

  12. Malnic B., Hirono J., Sato T., Buck L. B., Combinatorial receptor codes for odors, Cell, 1999, 96, 713–723

    Article  PubMed  CAS  Google Scholar 

  13. Buck L., Axel R., A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell, 1991, 65, 175–187

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X., Firestein S., The olfactory receptor gene superfamily of the mouse, Nat. Neurosci., 2002, 5, 124–133

    PubMed  CAS  Google Scholar 

  15. Godfrey P. A., Malnic B., Buck L. B., The mouse olfactory receptor gene family, Proc. Natl. Acad. Sci. U S A, 2004, 101, 2156–2161

    Article  PubMed  CAS  Google Scholar 

  16. Malnic B., Godfrey P. A., Buck L. B., The human olfactory receptor gene family, Proc. Natl. Acad. Sci. U S A, 2004, 101, 2584–2589

    Article  PubMed  CAS  Google Scholar 

  17. Ressler K. J., Sullivan S. L., Buck L. B., A zonal organization of odorant receptor gene expression in the olfactory epithelium, Cell, 1993, 73, 597–609

    Article  PubMed  CAS  Google Scholar 

  18. Vassar R., Ngai J., Axel R., Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium, Cell, 1993, 74, 309–318

    Article  PubMed  CAS  Google Scholar 

  19. Ressler K. J., Sullivan S. L., Buck L. B., Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb, Cell, 1994, 79, 1245–1255

    Article  PubMed  CAS  Google Scholar 

  20. Vassar R., Chao S. K., Sitcheran R., Nuñez J. M., Vosshall L. B., Axel R., Topographic organization of sensory projections to the olfactory bulb, Cell, 1994, 79, 981–991

    Article  PubMed  CAS  Google Scholar 

  21. Mombaerts P., Wang F., Dulac C., Chao S. K., Nemes A., Mendelsohn M. et al., Visualizing an olfactory sensory map, Cell, 1996, 87, 675–686

    Article  PubMed  CAS  Google Scholar 

  22. Wang F., Nemes A., Mendelsohn M., Axel R., Odorant receptors govern the formation of a precise topographic map, Cell, 1998, 93, 47–60

    Article  PubMed  CAS  Google Scholar 

  23. Miller A. M., Maurer L. R., Zou D. J., Firestein S., Greer C. A., Axon fasciculation in the develo** olfactory nerve, Neural Dev., 2010, 5, 20

    Article  PubMed  Google Scholar 

  24. Valverde F., Studies on the Piriform Lobe, Harvard University Press, 1965

  25. Price J. L., A study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex, J. Comp. Neurol., 1973, 150, 87–108

    Article  PubMed  CAS  Google Scholar 

  26. Devor M., Fiber trajectories of olfactory bulb efferents in the hamster, J. Comp. Neurol., 1976, 166, 31–48

    Article  PubMed  CAS  Google Scholar 

  27. Schwob J. E., Price J. L., The development of lamination of afferent fibers to the olfactory cortex in rats, with additional observations in the adult, J. Comp. Neurol., 1984, 223, 203–222

    Article  PubMed  CAS  Google Scholar 

  28. López-Mascaraque L., De Carlos J. A., Valverde F., Early onset of the rat olfactory bulb projections, Neuroscience, 1996, 70, 255–266

    Article  PubMed  Google Scholar 

  29. Walz A., Omura M., Mombaerts P., Development and topography of the lateral olfactory tract in the mouse, imaging by genetically encoded and injected fluorescent markers, J. Neurobiol., 2006, 66, 835–846

    Article  PubMed  Google Scholar 

  30. Inaki K., Nishimura S., Nakashiba T., Itohara S., Yoshihara Y., Laminar organization of the develo** lateral olfactory tract revealed by differential expression of cell recognition molecules, J. Comp. Neurol., 2004, 479, 243–256

    Article  PubMed  Google Scholar 

  31. Yamatani H., Sato Y., Fujisawa H., Hirata T., Chronotopic organization of the olfactory bulb axons in the lateral olfactory tract, J. Comp. Neurol., 2004, 475, 247–260

    Article  PubMed  Google Scholar 

  32. Altman J., Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb, J. Comp. Neurol., 1969, 137, 433–457

    Article  PubMed  CAS  Google Scholar 

  33. Graziadei G. A., Graziadei P. P., Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy, J. Neurocytol., 1979, 8, 197–213

    Article  PubMed  CAS  Google Scholar 

  34. Mombaerts P., Axonal wiring in the mouse olfactory system, Annu. Rev. Cell. Dev. Biol., 2006, 22, 713–737

    Article  PubMed  CAS  Google Scholar 

  35. Luskin M. B., Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone, Neuron, 1993, 11, 173–189

    Article  PubMed  CAS  Google Scholar 

  36. Lois C., Alvarez-Buylla A., Long-distance neuronal migration in the adult mammalian brain, Science, 1994, 264, 1145–1148

    Article  PubMed  CAS  Google Scholar 

  37. Doetsch F., Caillé I., Lim D. A., García-Verdugo J. M., Alvarez-Buylla A., Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell, 1999, 97, 703–716

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki S. O., Goldman J. E., Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways, a dynamic study of glial and neuronal progenitor migration, J. Neurosci., 2003, 23, 4240–4250

    PubMed  CAS  Google Scholar 

  39. Alvarez-Buylla A., Kohwi M., Nguyen T. M., Merkle F. T., The heterogeneity of adult stem cells and the emerging complexity of their niche, Cold Spring Harb. Symp. Quant. Biol., 2008, 73, 357–365

    Article  PubMed  CAS  Google Scholar 

  40. García-Moreno F., López-Mascaraque L., De Carlos J. A., Early telencephalic migration topographically converging in the olfactory cortex, Cereb. Cortex, 2008, 18, 1239–1252

    Article  PubMed  Google Scholar 

  41. Ninkovic J., Mori T., Götz M., Distinct modes of neuron addition in adult mouse neurogenesis, J. Neurosci., 2007, 27, 10906–10911

    Article  PubMed  CAS  Google Scholar 

  42. Brill M. S., Ninkovic J., Winpenny E., Hodge R. D., Ozen I., Yang R. et al., Adult generation of glutamatergic olfactory bulb interneurons, Nat. Neurosci., 2009, 12, 1524–1533

    Article  PubMed  CAS  Google Scholar 

  43. Doucette J. R. The glial cells in the nerve fiber layer of the rat olfactory bulb, Anat. Rec., 1984, 210, 385–391

    Article  PubMed  CAS  Google Scholar 

  44. Valverde F., Santacana M., Heredia M., Formation of an olfactory glomerulus, morphological aspects of development and organization, Neuroscience, 1992, 49, 255–275

    Article  PubMed  CAS  Google Scholar 

  45. Farbman A. I., Squinto L. M., Early development of olfactory receptor cell axons, Brain Res., 1985, 351, 205–213

    PubMed  CAS  Google Scholar 

  46. Marin-Padilla M., Amieva M. R., Early neurogenesis of the mouse olfactory nerve, Golgi and electron microscopic studies, J. Comp. Neurol., 1989, 288, 339–352

    Article  PubMed  CAS  Google Scholar 

  47. De Carlos J. A., López-Mascaraque L., Valverde F., The telencephalic vesicles are innervated by olfactory placode-derived cells, a possible mechanism to induce neocortical development, Neuroscience, 1995, 68, 1167–1178

    Article  PubMed  Google Scholar 

  48. Fornaro M., Geuna S., Fasolo A., Giacobini-Robecchi M. G., Evidence of very early neuronal migration from the olfactory placode of the chick embryo, Neuroscience, 2001, 107, 191–197

    Article  PubMed  CAS  Google Scholar 

  49. Hinds J. W., Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of ori-gin of neurons and neuroglia, J. Comp. Neurol., 1968, 134, 287–304

    Article  PubMed  CAS  Google Scholar 

  50. Bayer S. A., 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb, Exp. Brain Res., 1983, 50, 329–340

    Article  PubMed  CAS  Google Scholar 

  51. Jiménez D., García C., de Castro F., Chédotal A., Sotelo C., De Carlos J. A. et al., Evidence for intrinsic development of olfactory structures in Pax-6 mutant mice, J. Comp. Neurol., 2000, 428, 511–526

    Article  PubMed  Google Scholar 

  52. Blanchart A., De Carlos J. A., López-Mascaraque L., Time frame of mitral cell development in the mice olfactory bulb, J. Comp. Neurol., 2006, 496, 529–543

    Article  PubMed  Google Scholar 

  53. Santacana M., Heredia M., Valverde F., Development of the main efferent cells of the olfactory bulb and of the bulbar component of the anterior commissure, Brain Res. Dev. Brain Res., 1992, 65, 75–83

    Article  PubMed  CAS  Google Scholar 

  54. Gong Q., Shipley M. T., Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb, Neuron, 1995, 14, 91–101

    Article  PubMed  CAS  Google Scholar 

  55. López-Mascaraque L., García C., Valverde F., de Carlos J. A., Central olfactory structures in Pax-6 mutant mice, Ann. N Y Acad. Sci., 1998, 855, 83–94

    Article  PubMed  Google Scholar 

  56. López-Mascaraque L., de Castro F., The olfactory bulb as an independent developmental domain, Cell Death Differ., 2002, 9, 1279–1286

    Article  PubMed  CAS  Google Scholar 

  57. Doucette R., Development of the nerve fiber layer in the olfactory bulb of mouse embryos, J. Comp. Neurol., 1989, 285, 514–527

    Article  PubMed  CAS  Google Scholar 

  58. Pellier V., Astic L., Oestreicher A. B., Saucier D., B-50/GAP-43 expression by the olfactory receptor cells and the neurons migrating from the olfactory placode in embryonic rats, Brain Res. Dev. Brain Res., 1994, 80, 63–72

    Article  PubMed  CAS  Google Scholar 

  59. Honma S., Kawano M., Hayashi S., Kawano H., Hisano S., Expression and immunohistochemical localization of vesicular glutamate transporter 2 in the migratory pathway from the rat olfactory placode, Eur. J. Neurosci., 2004, 20, 923–936

    Article  PubMed  Google Scholar 

  60. Miller A. M., Treloar H. B., Greer C. A., Composition of the migratory mass during development of the olfactory nerve, J. Comp. Neurol., 2010, 518, 4825–4841

    Article  PubMed  Google Scholar 

  61. Blanchart A., Martín-López E., De Carlos J. A., López-Mascaraque L., Peripheral contributions to olfactory bulb cell populations (migrations towards the olfactory bulb), Glia, 2011, 59, 278–292

    Article  PubMed  CAS  Google Scholar 

  62. Murdoch B., Roskams A. J., A novel embryonic nestin-expressing radial glia-like progenitor gives rise to zonally restricted olfactory and vomeronasal neurons, J. Neurosci., 2008, 28, 4271–4282

    Article  PubMed  CAS  Google Scholar 

  63. Blanchart A., Romaguera M., García-Verdugo J. M., De Carlos J. A., López-Mascaraque L., Synaptogenesis in the mouse olfactory bulb during glomerulus development, Eur. J. Neurosci., 2008, 27, 2838–2846

    Article  PubMed  Google Scholar 

  64. Blanes T., Sobre algunos puntos dudoses de la estructura del bulbo olfatorio, Rev. Trimest. Microgr., 1898, 3, 99–127

    Google Scholar 

  65. Valverde F., López-Mascaraque L., Neuroglial arrangements in the olfactory glomeruli of the hedgehog, J. Comp. Neurol., 1991, 307, 658–674

    Article  PubMed  CAS  Google Scholar 

  66. Goodman M. N., Silver J., Jacobberger J. W., Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines, Brain Res., 1993, 619, 199–213

    Article  PubMed  CAS  Google Scholar 

  67. Tisay K. T., Key B., The extracellular matrix modulates olfactory neurite outgrowth on ensheathing cells, J. Neurosci., 1999, 19, 9890–9899

    PubMed  CAS  Google Scholar 

  68. Kafitz K. W., Greer C. A., Olfactory ensheathing cells promote neurite extension from embryonic olfactory receptor cells in vitro, Glia, 1999, 25, 99–110

    Article  PubMed  CAS  Google Scholar 

  69. Lipson A. C., Widenfalk J., Lindqvist E., Ebendal T., Olson L., Neurotrophic properties of olfactory ensheathing glia, Exp., Neurol., 2003, 180, 167–171

    Article  Google Scholar 

  70. Chung R. S., Woodhouse A., Fung S., Dickson T. C., West A. K., Vickers J. C. et al., Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors, Cell. Mol. Life Sci., 2004, 61, 1238–1245

    Article  PubMed  CAS  Google Scholar 

  71. Leaver S. G., Harvey A. R., Plant G. W., Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro, Glia, 2006, 53, 467–476

    Article  PubMed  CAS  Google Scholar 

  72. Deumens R., Koopmans G. C., Honig W. M., Hamers F. P., Maquet V., Jérôme R., et al., Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord, Exp. Neurol., 2006, 200, 89–103

    Article  PubMed  CAS  Google Scholar 

  73. Au E., Richter M. W., Vincent A. J., Tetzlaff W., Aebersold R., Sage E. H. et al., SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair, J. Neurosci., 2007, 27, 7208–7221

    Article  PubMed  CAS  Google Scholar 

  74. Runyan S. A., Phelps P. E., Mouse olfactory ensheathing glia enhance axon outgrowth on a myelin substrate in vitro, Exp. Neurol., 2009, 216, 95–104

    Article  PubMed  CAS  Google Scholar 

  75. Pellitteri R., Spatuzza M., Russo A., Zaccheo D., Stanzani S., Olfactory ensheathing cells represent an optimal substrate for hippocampal neurons, an in vitro study, Int. J. Dev., Neurosci., 2009, 27, 453–458

    Article  Google Scholar 

  76. Wang Y. Z., Molotkov A., Song L., Li Y., Pleasure D. E., Zhou C. J., Activation of the Wnt/beta-catenin signaling reporter in develo** mouse olfactory nerve layer marks a specialized subgroup of olfactory ensheathing cells, Dev. Dynam., 2008, 237, 3157–3168

    Article  CAS  Google Scholar 

  77. Zaghetto A. A., Paina S., Mantero S., Platonov N., Peretto P., Bovetti S. et al., Activation of the Wnt-beta catenin pathway in a cell population on the surface of the forebrain is essential for the establishment of olfactory axon connections, J. Neurosci., 2007, 27, 9757–9768

    Article  PubMed  CAS  Google Scholar 

  78. Liu K. L., Chuah M. I., Lee K. K., Soluble factors from the olfactory bulb attract olfactory Schwann cells, J. Neurosci., 1995, 15, 990–1000

    PubMed  CAS  Google Scholar 

  79. López-Mascaraque L., García C., Blanchart A., De Carlos J. A., Olfactory epithelium influences the orientation of mitral cell dendrites during development, Dev. Dynam., 2005, 232, 325–335

    Article  Google Scholar 

  80. Jefferis G. S., Vyas R. M., Berdnik D., Ramaekers A., Stocker R. F., Tanaka N. K. et al. Developmental origin of wiring specificity in the olfactory system of Drosophila, Development, 2004, 131, 117–130

    Article  PubMed  CAS  Google Scholar 

  81. Graziadei P. P., Monti-Graziadei A. G., The influence of the olfactory placode on the development of the telencephalon in Xenopus laevis, Neuroscience, 1992, 46, 617–629

    Article  PubMed  CAS  Google Scholar 

  82. LaMantia A. S., Bhasin N., Rhodes K., Heemskerk J., Mesenchymal/epithelial induction mediates olfactory pathway formation, Neuron, 2000, 28, 411–425

    Article  PubMed  CAS  Google Scholar 

  83. Anchan R. M., Drake D. P., Haines C. F., Gerwe E. A., LaMantia A. S., Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway, J. Comp. Neurol., 1997, 379, 171–184

    Article  PubMed  CAS  Google Scholar 

  84. Mizrahi A., Katz L. C., Dendritic stability in the adult olfactory bulb, Nat. Neurosci., 2003, 6, 1201–1207

    Article  PubMed  CAS  Google Scholar 

  85. Kossel A. H., Williams C. V., Schweizer M., Kater S. B., Afferent innervation influences the development of dendritic branches and spines via both activity-dependent and non-activity-dependent mechanisms, J. Neurosci., 1997, 17, 6314–6324

    PubMed  CAS  Google Scholar 

  86. Acebes A., Ferrús A., Cellular and molecular features of axon collaterals and dendrites, Trends Neurosci., 2000, 23, 557–565

    Article  PubMed  CAS  Google Scholar 

  87. Cline, H. T., Dendritic arbor development and synaptogenesis, Curr. Opin. Neurobiol., 2001, 11, 118–126

    Article  PubMed  CAS  Google Scholar 

  88. Wong R. O., Ghosh A., Activity-dependent regulation of dendritic growth and patterning, Nat. Rev. Neurosci., 2002, 3, 803–812

    Article  PubMed  CAS  Google Scholar 

  89. Yuan Q., Knöpfel T., Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft, J. Neurophysiol., 2006, 95, 2417–2426

    Article  PubMed  CAS  Google Scholar 

  90. Zhou Z., **ong W., Masurkar A. V., Chen W. R., Shepherd G. M., Dendritic calcium plateau potentials modulate input-output properties of juxtaglomerular cells in the rat olfactory bulb, J. Neurophysiol., 2006, 96, 2354–2363

    Article  PubMed  CAS  Google Scholar 

  91. Hinds J. W., Ruffett T. L., Mitral cell development in the mouse olfactory bulb, reorientation of the perikaryon and maturation of the axon initial segment, J. Comp. Neurol., 1973, 151, 281–306

    Article  PubMed  CAS  Google Scholar 

  92. Chen H., He Z., Bagri A., Tessier-Lavigne M., Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins, Neuron, 1998, 21, 1283–1290

    Article  PubMed  CAS  Google Scholar 

  93. Zou Y., Stoeckli E., Chen H., Tessier-Lavigne M., Squeezing axons out of the gray matter, a role for slit and semaphorin proteins from midline and ventral spinal cord, Cell, 2000, 102, 363–375

    Article  PubMed  CAS  Google Scholar 

  94. Giger R. J., Cloutier J. F., Sahay A., Prinjha R. K., Levengood D. V., Moore S. E. et al., Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins, Neuron, 2000, 25, 29–41

    Article  PubMed  CAS  Google Scholar 

  95. Kobayashi H., Koppel A. M., Luo Y., Raper J. A., A role for collapsin-1 in olfactory and cranial sensory axon guidance, J. Neurosci., 1997, 17, 8339–8352

    PubMed  CAS  Google Scholar 

  96. Schwarting G. A., Kostek C., Ahmad N., Dibble C., Pays L., Puschel A. W., Semaphorin 3A is required for guidance of olfactory axons in mice, J. Neurosci., 2000, 20, 7691–7697

    PubMed  CAS  Google Scholar 

  97. Takeuchi H., Inokuchi K., Aoki M., Suto F., Tsuboi A., Matsuda I. et al., Sequential arrival and graded secretion of Sema 3F by olfactory neuron axons specify map topography at the bulb, Cell, 2010, 141, 1056–1067

    Article  PubMed  CAS  Google Scholar 

  98. Walz A., Rodriguez I., Mombaerts P., Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice, J. Neurosci., 2002, 22, 4025–4035

    PubMed  CAS  Google Scholar 

  99. Renzi M. J., Wexler T. L., Raper J. A., Olfactory sensory axons expressing a dominant-negative semaphorin receptor enter the CNS early and overshoot their target, Neuron, 2000, 28, 437–447

    Article  PubMed  CAS  Google Scholar 

  100. Giger R. J., Urquhart E. R., Gillespie S. K., Levengood D. V., Ginty D. D., Kolodkin A. L., Neuropilin-2 is a receptor for semaphorin IV, insight into the structural basis of receptor function and specificity, Neuron, 1998, 21, 1079–1092

    Article  PubMed  CAS  Google Scholar 

  101. De Castro F., Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex, Front. Neurosci., 2009, doi: 10. 3389/neuro. 22. 004. 2009.

  102. Chen H., Chédotal A., He Z., Goodman C. S., Tessier-Lavigne M., Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorinsSema E and Sema IV but not Sema III, Neuron, 1997, 19, 547–559

    Article  PubMed  CAS  Google Scholar 

  103. Chen H., Bagri A., Zupicich J. A., Zou Y., Stoeckli E., Pleasure S. J., et al., Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections, 2000, Neuron, 25, 43–56

    Article  PubMed  Google Scholar 

  104. Kiani C., Chen L., Wu Y. J., Yee A. J., Yang B. B., Structure and function of aggrecan, Cell Res., 2002, 12, 19–32

    Article  PubMed  Google Scholar 

  105. Seidenbecher C. I., Richter K., Rauch U., Fässler R., Garner C. C., Gundelfinger E. D., Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositolanchored isoforms, J. Biol. Chem., 1995, 270, 27, 206–212

    Google Scholar 

  106. Pyka M., Wetzel C., Aguado A., Geissler M., Hatt H., Faissner A., Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons, Eur. J. Neurosci., 2011, 33, 2187–2202

    Article  PubMed  Google Scholar 

  107. Yamada H., Fredette B., Shitara K., Hagihara K., Miura R., Ranscht B. et al., The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons, J. Neurosci., 1997, 17, 7784–7795

    PubMed  CAS  Google Scholar 

  108. Turner N., Mason P. J., Brown R., Fox M., Povey S., Rees A. et al., Molecular cloning of the human Goodpasture antigen demonstrates it to be the alpha 3 chain of type IV collagen, J. Clin. Invest., 1992, 89, 592–601

    Article  PubMed  CAS  Google Scholar 

  109. Abrahamson D. R., Isom K., Roach E., Stroganova L., Zelenchuk A., Miner J. H. et al., Laminin compensation in collagen alpha3(IV) knockout (Alport) glomeruli contributes to permeability defects, J. Am. Soc. Nephrol., 2007, 18, 2465–2472

    Article  PubMed  CAS  Google Scholar 

  110. Tanaka M., Asada M., Higashi A. Y., Nakamura J., Oguchi A., Tomita M. et al., Loss of the BMP antagonist USAG-1 ameliorates disease in a mouse model of the progressive hereditary kidney disease Alport syndrome, J. Clin. Invest., 2010, 120, 768–777

    Article  PubMed  CAS  Google Scholar 

  111. Demyanenko G. P., Riday T. T., Tran T. S., Dalal J., Darnell E. P., Brennaman L. H., et al., NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity, J. Neurosci., 2011, 31, 1545–1558

    Article  PubMed  CAS  Google Scholar 

  112. De Carlos J. A., López-Mascaraque L., Valverde F., Early olfactory fiber projections and cell migration into the rat telencephalon, Int. J. Dev. Neurosci., 1996, 14, 853–866

    Article  PubMed  Google Scholar 

  113. Bailey M., Puche A. C., Shipley M. T., Development of the olfactory bulb, evidence for glia-neuron interactions in glomerular formation, J. Comp. Neurol., 1999, 415, 423–448

    Article  PubMed  CAS  Google Scholar 

  114. Treloar H. B., Purcell A. L., Greer C. A., Glomerular formation in the develo** rat olfactory bulb, J. Comp. Neurol., 1999, 413, 289–304

    Article  PubMed  CAS  Google Scholar 

  115. Treloar H. B, Uboha U., Jeromin A., Greer C. A., Expression of the neuronal calcium sensor protein NCS-1 in the develo** mouse olfactory pathways, J. Comp. Neurol., 2005, 482, 201–216

    Article  PubMed  CAS  Google Scholar 

  116. Aiga M., Levinson J. N., Bamji S. X., N-cadherin and neuroligins cooperate to regulate synapse formation in hippocampal cultures, J. Biol. Chem., 2011, 286, 851–858

    Article  PubMed  CAS  Google Scholar 

  117. Lee H., Dean C., Isacoff E., Alternative splicing of neuroligin regulates the rate of presynaptic differentiation, J. Neurosci., 2010, 30, 11435–11446

    Article  PubMed  CAS  Google Scholar 

  118. Ahn K., Shelton C. C., Tian Y., Zhang X., Gilchrist M. L., Sisodia S. S., et al., Activation and intrinsic gamma-secretase activity of presenilin 1, Proc. Natl. Acad. Sci. U S A, 2010, 107, 21435–21440

    Article  PubMed  CAS  Google Scholar 

  119. Gadadhar A., Marr R., Lazarov O., Presenilin-1 regulates neural progenitor cell differentiation in the adult brain, J. Neurosci., 2011, 31, 2615–2623

    Article  PubMed  CAS  Google Scholar 

  120. Tran P. B., Banisadr G., Ren D., Chenn A., Miller R. J., Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain, J. Comp. Neurol., 2007, 500, 1007–1033

    Article  PubMed  CAS  Google Scholar 

  121. Skuljec J., Sun H., Pul R., Bénardais K., Ragancokova D., Moharregh-Khiabani D. et al., CCL5 induces a pro-inflammatory profile in microglia in vitro, Cell Immunol., 2011, 270, 164–171

    Article  PubMed  CAS  Google Scholar 

  122. Bolitho C., Hahn M. A., Baxter R. C., Marsh D. J., The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor, Endocr. Relat. Cancer, 2010, 17, 929–940

    Article  PubMed  CAS  Google Scholar 

  123. Pineau I., Sun L., Bastien D., Lacroix S., Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion, Brain Behav. Immun., 2010, 24, 540–553

    Article  PubMed  CAS  Google Scholar 

  124. Krathwohl M. D., Kaiser J. L., Chemokines promote quiescence and survival of human neural progenitor cells, Stem Cells, 2004, 22, 109–118

    Article  PubMed  CAS  Google Scholar 

  125. Ni H. T., Hu S., Sheng W. S., Olson J. M., Cheeran M. C., Chan A. S. et al., High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells, Brain Res. Dev. Brain Res., 2004, 152, 159–169

    Article  PubMed  CAS  Google Scholar 

  126. Tran P. B., Ren D., Miller R. J., The HIV-1 coat protein gp120 regulates CXCR4-mediated signaling in neural progenitor cells, J. Neuroimmunol., 2005, 160, 68–76

    Article  PubMed  CAS  Google Scholar 

  127. Ceci M. L., López-Mascaraque L., De Carlos J. A., The influence of the environment on Cajal-Retzius cell migration, Cereb. Cortex, 2010, 20, 2348–2360

    Article  PubMed  Google Scholar 

  128. Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M. et al., Identification of a chromosome 18q gene that is altered in colorectal cancers. Science, 1990, 247, 49–56

    Article  PubMed  CAS  Google Scholar 

  129. Keino-Masu K., Masu M., Hinck L., Leonardo E. D., Chan S. S., Culotti J. G. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor, Cell, 1996, 87, 175–185

    Article  PubMed  CAS  Google Scholar 

  130. Chan S. S., Zheng H., Su M. W., Wilk R., Killeen M. T., Hedgecock E. M. et al., UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues, Cell, 1996, 87, 187–195

    Article  PubMed  CAS  Google Scholar 

  131. Fazeli A., Dickinson S. L., Hermiston M. L., Tighe R. V., Steen R. G., Small C. G. et al., Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene, Nature, 1997, 386, 796–804

    Article  PubMed  CAS  Google Scholar 

  132. Stein E., Tessier-Lavigne M., Hierarchical organization of guidance receptors, silencing of netrin attraction by slit through a Robo/DCC receptor complex, Science, 2001, 291, 1928–1938

    Article  PubMed  CAS  Google Scholar 

  133. Mehlen P., Rabizadeh S., Snipas S. J., Assa-Munt N., Salvesen G. S., Bredesen D. E., The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis, Nature, 1998, 395, 801–804

    Article  PubMed  CAS  Google Scholar 

  134. Shi M., Zheng M. H., Liu Z. R., Hu Z. L., Huang Y., Chen J. Y. et al., DCC is specifically required for the survival of retinal ganglion and displaced amacrine cells in the develo** mouse retina, Dev. Biol., 2010, 348, 87–96

    Article  PubMed  CAS  Google Scholar 

  135. Pellier V., Saucier D., Oestreicher A. B., Astic L., Ultrastructural and cytochemical identification of apoptotic cell death accompanying development of the fetal rat olfactory nerve layer, Anat. Embryol., 1996, 194, 99–109

    Article  PubMed  CAS  Google Scholar 

  136. Beltaifa S., Webster M. J., Ligons D. L., Fatula R. J., Herman M. M., Kleinman J. E. et al., Discordant changes in cortical TrkC mRNA and protein during the human lifespan, Eur. J. Neurosci., 2005, 21, 2433–2444

    Article  PubMed  Google Scholar 

  137. Nikoletopoulou V., Lickert H., Frade J. M., Rencurel C., Giallonardo P., Zhang L. et al., Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not, Nature, 2010, 467, 59–63

    Article  PubMed  CAS  Google Scholar 

  138. Irie A., Yates E. A., Turnbull J. E., Holt C. E., Specific heparan sulfate structures involved in retinal axon targeting, Development, 2002, 129, 61–70

    PubMed  CAS  Google Scholar 

  139. Inatani M., Irie F., Plump A. S., Tessier-Lavigne M., Yamaguchi Y., Mammalian brain morphogenesis and midline axon guidance require heparan sulphate, Science, 2003, 302, 1044–1046

    Article  PubMed  CAS  Google Scholar 

  140. Johnson K. G., Ghose A., Epstein E., Lincecum J., O’Connor M. B., Van Vactor D., Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance, Curr. Biol., 2004, 14, 499–504

    Article  PubMed  CAS  Google Scholar 

  141. Steigemann P., Molitor A., Fellert S., Jäckle H., Vorbrüggen G., Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signalling, Curr. Biol., 2004, 14, 225–230

    PubMed  CAS  Google Scholar 

  142. Ivins J. K., Litwack E. D., Kumbasar A., Stipp C. S., Lander A. D., Cerebroglycan, a developmentally regulated cell-surface heparansulfate proteoglycan, is expressed on develo** axons and growth cones, Dev. Biol., 1997, 184, 320–332

    Article  PubMed  CAS  Google Scholar 

  143. Alahari S. K., Lee J. W., Juliano R. L., Nischarin, a novel protein that interacts with the integrin alpha5 subunit and inhibits cell migration, J. Cell. Biol., 2000, 151, 1141–1154

    Article  PubMed  CAS  Google Scholar 

  144. Alahari S. K., Nasrallah H., A membrane proximal region of the integrin alpha5 subunit is important for its interaction with nischarin, Biochem. J., 2004, 377, 449–457

    Article  PubMed  CAS  Google Scholar 

  145. Cho J. H., Lépine M., Andrews W., Parnavelas J., Cloutier J. F., Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb, J. Neurosci., 2007, 27, 9094–9104

    Article  PubMed  CAS  Google Scholar 

  146. Nguyen-Ba-Charvet K. T., Di Meglio T., Fouquet C., Chédotal A., Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons, J. Neurosci., 2008, 28, 4244–4249

    Article  PubMed  CAS  Google Scholar 

  147. Prince J. E., Cho J. H., Dumontier E., Andrews W., Cutforth T., Tessier-Lavigne M. et al., Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb, J. Neurosci, 2009, 29, 14211–14222

    Article  PubMed  CAS  Google Scholar 

  148. Patel K., Nash J. A., Itoh A., Liu Z., Sundaresan V., Pini A., Slit proteins are not dominant chemorepellents for olfactory tract and spinal motor axons, Development, 2001, 128, 5031–5037

    PubMed  CAS  Google Scholar 

  149. Dugan J. P., Stratton A., Riley H. P., Farmer W. T., Mastick G. S., Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals, Mol. Cell. Neurosci., 2011, 46, 347–356

    Article  PubMed  CAS  Google Scholar 

  150. Indulekha C. L., Divya T. S., Divya M. S., Sanalkumar R., Rasheed V. A., Dhanesh S. B. et al., Hes-1 regulates the excitatory fate of neural progenitors through modulation of Tlx3 (HOX11L2) expression, Cell. Mol. Life Sci., 2011, in press, DOI 10. 1007/s00018-011-0765-8

  151. Kondo T., Matsuoka A. J., Shimomura A., Koehler K. R., Chan R. J., Miller J. M., et al., Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx 3, Stem Cells, 2011, 29, 836–846

    Article  PubMed  CAS  Google Scholar 

  152. Wang Y. Z., Molotkov A., Song L., Li Y., Pleasure D. E., Zhou C. J., Activation of the Wnt/beta-catenin signalling reporter in develo** mouse olfactory nerve layer marks a specialized subgroup of olfactory ensheating cells, Dev. Dynam., 2008, 237, 157–168

    Google Scholar 

  153. Corotto F. S., Henegar J. A., Maruniak J. A., Neurogenesis persists in the subependymal layer of the adult mouse brain, Neurosci. Lett., 1993, 149, 111–114

    Article  PubMed  CAS  Google Scholar 

  154. Yoon S. O., Lois C., Alvirez M., Alvarez-Buylla A., Falck-Pedersen E., Chao M. V., Adenovirus-mediated gene delivery into neuronal precursors of the adult mouse brain, Proc. Natl. Acad. Sci. U S A, 1996, 93, 11974–11979

    Article  PubMed  CAS  Google Scholar 

  155. Batista-Brito R., Close J., Machold R., Fishell G., The distinct temporal origins of olfactory bulb interneuron subtypes, J. Neurosci., 2008, 28, 3966–3975

    Article  PubMed  CAS  Google Scholar 

  156. Popp S., Andersen J. S., Maurel P., Margolis R. U., Localization of aggrecan and versican in the develo** rat central nervous system, Dev. Dynam., 2003, 227, 143–149

    Article  CAS  Google Scholar 

  157. Adams N. C., Tomoda T., Cooper M., Dietz G., Hatten M. E., Mice that lack astrotactin have slowed neuronal migration, Development, 2002, 129, 965–972

    PubMed  CAS  Google Scholar 

  158. Samson M., Labbe O., Mollereau C., Vassart G., Parmentier M., Molecular cloning and functional expression of a new human CCchemokine receptor gene”, Biochemistry, 1996, 35, 3362–3367

    Article  PubMed  CAS  Google Scholar 

  159. Wu Q, Maniatis T., A striking organization of a large family of human neural cadherin-like cell adhesion genes, Cell, 1999, 97, 779–790

    Article  PubMed  CAS  Google Scholar 

  160. Anisowicz A., Bardwell L., Sager R., Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells, Proc. Natl. Acad. Sci. U S A, 1987, 84, 7188–7192

    Article  PubMed  CAS  Google Scholar 

  161. Bagri A., Gurney T., He X., Zou Y. R., Littman D. R., Tessier-Lavigne M. et al., The chemokine SDF 1 regulates migration of dentate granule cells, Development, 2002, 129, 4249–4260

    PubMed  CAS  Google Scholar 

  162. Tissir F., Wang C. E., Goffinet A. M., Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development, Brain Res. Dev. Brain Res., 2004, 149, 63–71

    Article  PubMed  CAS  Google Scholar 

  163. Lieberam I., Agalliu D., Nagasawa T., Ericson J., Jessell T. M., A Cxcl 12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons, Neuron, 2005, 47, 667–679

    Article  PubMed  CAS  Google Scholar 

  164. Belmadani A., Tran P. B., Ren D., Assimacopoulos S., Grove E. A., Miller R. J., The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors, J. Neurosci., 2005, 25, 3995–4003

    Article  PubMed  CAS  Google Scholar 

  165. Martín-López E., Blanchart A., De Carlos J. A., López-Mascaraque L., Dab1 (disable homolog-1) reelin adaptor protein is overexpressed in the olfactory bulb at early postnatal stages. PLoS One, 2011, 6, e26673

    Article  PubMed  CAS  Google Scholar 

  166. Mehlen P., Bredesen D. E., The dependence receptor hypothesis, Apoptosis, 2004, 9, 37–49

    Article  PubMed  CAS  Google Scholar 

  167. Fischman K., Edman J. C., Shackleford G. M., Turner J. A., Rutter W. J., Nir U., A murine fer testis-specific transcript (ferT) encodes a truncated Fer protein, Mol. Cell Biol., 1990, 10, 146–153

    PubMed  CAS  Google Scholar 

  168. Craig A. W., Greer P. A., Fer kinase is required for sustained p38 kinase activation and maximal chemotaxis of activated mast cells, Mol. Cell. Biol., 2002, 22, 6363–6367

    Article  PubMed  CAS  Google Scholar 

  169. Herndon M. E., Stipp C. S., Lander A. D., Interactions of neural glycosaminoglycans and proteoglycans with protein ligands, assessment of selectivity, heterogeneity and the participation of core proteins in binding, Glycobiology, 1999, 9, 143–155

    Article  PubMed  CAS  Google Scholar 

  170. Chuang P. T., McMahon A. P., Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein, Nature, 1999, 397, 617–621

    Article  PubMed  CAS  Google Scholar 

  171. Semple B. D., Kossmann T., Morganti-Kossmann M. C., Role of chemokines in CNS health and pathology, a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks, J. Cereb. Blood Flow Metab., 2010, 30, 459–473

    Article  PubMed  CAS  Google Scholar 

  172. Deng Q., Andersson E., Hedlund E., Alekseenko Z., Coppola E., Panman L., et al., Specific and integrated roles of Lmx 1a, Lmx1b and Phox2a in ventral midbrain development, Development, 2011, 138, 3399–3408

    Article  PubMed  CAS  Google Scholar 

  173. Li H. P., Oohira A., Ogawa M., Kawamura K., Kawano H., Aberrant trajectory of thalamocortical axons associated with abnormal localization of neurocan immunoreactivity in the cerebral neocortex of reeler mutant mice, Eur. J. Neurosci., 2005, 22, 2689–2696

    Article  PubMed  Google Scholar 

  174. Pollard J. D., Armati P. J., CIDP — the relevance of recent advances in Schwann cell/axonal neurobiology, J. Peripher. Nerv. Syst., 2011, 16, 15–23

    Article  PubMed  Google Scholar 

  175. Cariboni A., Davidson K., Rakic S., Maggi R., Parnavelas J. G., Ruhrberg C., Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism, Hum. Mol. Genet., 2011, 20, 336–344

    Article  PubMed  CAS  Google Scholar 

  176. McIntyre J. C., Titlow W. B., McClintock T. S., Axon growth and guidance genes identify nascent, immature, and mature olfactory sensory neurons, J. Neurosci. Res., 2010, 88, 3243–3256

    Article  PubMed  CAS  Google Scholar 

  177. Barallobre M. J., Pascual M., Del Río J. A., Soriano E., The netrin family of guidance factors: emphasis on netrin-1 signalling, Brain Res. Brain Res. Rev., 2005, 49, 22–47

    Article  PubMed  CAS  Google Scholar 

  178. Hakanen J., Duprat S., Salminen M., Netrin1 is required for neural and glial precursor migrations into the olfactory bulb, Dev. Biol., 2011, 355, 101–114

    Article  PubMed  CAS  Google Scholar 

  179. Imamura F., Greer C. A., Dendritic branching of olfactory bulb mitral and tufted cells, regulation by TrkB, PLoS One, 2009, 4, e6729

    Article  PubMed  CAS  Google Scholar 

  180. Hasegawa R., Takami S., Nishiyama F., Immunoelectron microscopic analysis of the distribution of tyrosine kinase receptor B in olfactory axons, Anat. Sci. Int., 2008, 83, 186–194

    Article  PubMed  CAS  Google Scholar 

  181. Levy J. B., Canoll P. D., Silvennoinen O., Barnea G., Morse B., Honegger A. M. et al., The cloning of a receptor-type protein tyrosine phosphatase expressed in the central nervous system, J. Biol. Chem., 1993, 268, 10573–10581

    PubMed  CAS  Google Scholar 

  182. Ulbricht U., Eckerich C., Fillbrandt R., Westphal M., Lamszus K., RNA interference targeting protein tyrosine phosphatase zeta/receptortype protein tyrosine phosphatase beta suppresses glioblastoma growth in vitro and in vivo, J. Neurochem., 2006, 98, 1497–1506

    Article  PubMed  CAS  Google Scholar 

  183. Hivert B., Liu Z., Chuang C. Y., Doherty P., Sundaresan V., Robo1 and Robo2 are homophilic binding molecules that promote axonal growth, Mol. Cell. Neurosci., 2002, 21, 534–545

    Article  PubMed  CAS  Google Scholar 

  184. Walz A., Feinstein P., Khan M., Mombaerts P., Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F, Development, 2007, 134, 4063–4072

    Article  PubMed  CAS  Google Scholar 

  185. Cloutier J. F., Sahay A., Chang E. C., Tessier-Lavigne M., Dulac C., Kolodkin A. L. et al., Differential requirements for semaphorin 3F and Slit-1 in axonal targeting, fasciculation, and segregation of olfactory sensory neuron projections, J. Neurosci., 2004, 24, 9087–9096

    Article  PubMed  CAS  Google Scholar 

  186. Tsim T. Y., Wong E. Y., Leung M. S., Wong C. C., Expression of axon guidance molecules and their related genes during development and sexual differentiation of the olfactory bulb in rats, Neuroscience, 2004, 123, 951–965

    Article  PubMed  CAS  Google Scholar 

  187. Nguyen-Ba-Charvet K. T., Brose K., Marillat V., Kidd T., Goodman C. S., Tessier-Lavigne M. et al., Slit 2-mediated chemorepulsion and collapse of develo** forebrain axons, Neuron, 1999, 22, 1–20

    Article  Google Scholar 

  188. Scherberich A., Tucker R. P., Samandari E., Brown-Luedi M., Martin D., Chiquet-Ehrismann R., Murine tenascin-W, a novel mammalian tenascin expressed in kidney and at sites of bone and smooth muscle development, J. Cell. Sci., 2004, 117, 571–581

    Article  PubMed  CAS  Google Scholar 

  189. Kim D., Ackerman S. L., The UNC5C netrin receptor regulates dorsal guidance of mouse hindbrain axons, J. Neurosci., 2011, 31, 2167–2179

    Article  PubMed  CAS  Google Scholar 

  190. Cariboni A., Rakic S., Liapi A., Maggi R., Goffinet A., Parnavelas J. G., Reelin provides an inhibitory signal in the migration of gonadotropinreleasing hormone neurons, Development, 2005, 132, 4709–4718

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura López-Mascaraque.

About this article

Cite this article

Blanchart, A., López-Mascaraque, L. From the periphery to the brain: Wiring the olfactory system. Translat.Neurosci. 2, 293–309 (2011). https://doi.org/10.2478/s13380-011-0038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-011-0038-x

Keywords

Navigation