Log in

Terahertz detectors and focal plane arrays

  • Published:
Opto-Electronics Review

Abstract

Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands.

In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002).

    Article  Google Scholar 

  2. P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465–480 (2006).

    Article  ADS  Google Scholar 

  3. P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Milli. 27, 631–655 (2006).

    Article  Google Scholar 

  4. G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications,” in Sensors. Advancements in Modeling, Design Issues, Fabrication and Practical Applications, pp. 387–414, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008.

    Google Scholar 

  5. T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-St. Circ. 40, 2104–2110 (2005).

    Article  Google Scholar 

  6. D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1–66 (2004).

    Article  ADS  Google Scholar 

  7. J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nat. Nanotechnol. 3, 496–500 (2008).

    Article  ADS  Google Scholar 

  8. A.H. Lettington, I.M. Blankson, M. Attia, and D. Dunn, “Review of imaging architecture”, Proc. SPIE 4719, 327–340 (2002).

    Article  ADS  Google Scholar 

  9. A.W. Blain, I. Smail, R.J. Ivison, J.-P. Kneib, and D.T. Frayer, “Submillimetre galaxies”, Phys. Rep. 369, 111–176 (2002).

    Article  ADS  Google Scholar 

  10. D. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, and X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers”, Proc. SPIE 4013, 36–46 (2000).

    Article  ADS  Google Scholar 

  11. “10 emerging technologies that will change your world”, Technology Review, 32–50, February 2004.

  12. J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004).

    Article  ADS  Google Scholar 

  13. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology”, Nat. Mater. 1, 26–33 (2002).

    Article  ADS  Google Scholar 

  14. D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003.

    Book  Google Scholar 

  15. E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, Int. J. High Speed Electron. 13, 99–1097 (2003).

    Google Scholar 

  16. R.M. Woodward, “Terahertz technology in global homeland security”, Proc. SPIE 5781, 22–31 (2005).

    Article  ADS  Google Scholar 

  17. D.L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?”, Proc. IEEE 93, 1722–1743 (2005).

    Article  Google Scholar 

  18. H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system”, Opt. Express 14, 9130–9141 (2006).

    Article  ADS  Google Scholar 

  19. M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  20. A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011.

    Google Scholar 

  21. T.G. Phillips and J. Keene, “Submillimeter astronomy”, Proc. IEEE 80, 1662–1678 (1992).

    Article  ADS  Google Scholar 

  22. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kuerner, “Short-range ultra-broadband terahertz communications: concept and perspectives”, IEEE Antenn. Propag. M. 49, 24–35 (2007).

    Article  ADS  Google Scholar 

  23. F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10–36 (2010).

    Article  ADS  Google Scholar 

  24. F. Sizov and A. Rogalski, “THz detectors”, Prog. Quant. Electron. 34, 278–347 (2010).

    Article  ADS  Google Scholar 

  25. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range”, Nature 403, 405–407 (2000).

    Article  ADS  Google Scholar 

  26. S. Komiyama, “Single-photon detectors in terahertz region”, IEEE J. Sel. Top. Quant. 17, 54–66 (2011).

    Article  Google Scholar 

  27. G. Chattopadhyay, “Heterodyne arrays at submillimeter wavelengths”, 38-th General Assembly of Int. Union of Radio Science, New Delhi, October, 2005.

    Google Scholar 

  28. P.F. Goldsmith, Ph. Appleton, L. Armus, J. Bauer, D. Benford, A. Blaind, M. Bradford, G. Bryden, M. Dragovan, M. Harwit, G. Helou, W.D. Langer, D. Leisawitz, C. Paineb, and H. Yorke, “CALISTO: The cryogenic aperture large infrared space telescope observatory”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html]).

  29. M. Harwit, G. Helou, L. Armus, C.M. Bradford, P.F. Goldsmith, M. Hauser, D. Leisawitz, D.F. Lester, G. Rieke, and S.A. Rinehart, “Far-infrared/submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html

  30. J.J. Bock, “Superconducting detector arrays for far-infrared to mm-wave astrophysics”, http://cmbpol.uchicago.edu/depot/pdf/white-paper_j-bock.pdf

  31. S. Hargreaves and R.A. Lewis, “Terahertz imaging: Materials and methods”, J. Mater. Sci.: Mater. Electron. 18, S299–S303 (2007).

    Article  Google Scholar 

  32. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Non-destructive sub-THz CW imaging”, Proc. SPIE 5727, 132–142 (2005).

    Article  ADS  Google Scholar 

  33. A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward oscillator”, Appl. Opt. 43, 5637–5646 (2004).

    Article  ADS  Google Scholar 

  34. A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett. 89, 141125 (2006).

    Article  ADS  Google Scholar 

  35. A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photon. Tech. L. 18, 1415–1417 (2006).

    Article  ADS  Google Scholar 

  36. F.F. Sizov, V.P. Reva, A.G. Golenkov, and V.V. Zabudsky, “Uncooled detector challenges for THz/sub-THz arrays imaging”, J Infrared Millim. Te., DOI 10.1007/s10762-011-9789-2 (2011).

    Google Scholar 

  37. M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor”, Brit. J. Appl. Phys. 14, 672–676 (1963).

    Article  ADS  Google Scholar 

  38. Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer”, Jpn. J. Appl. Phys. 9, 125–131 (1970).

    Article  ADS  Google Scholar 

  39. T.-L. Hwang, S.E. Scharz, and D.B. Rutledge, “Microbolometers for infrared detection”, Appl. Phys. Lett. 34, 773–776 (1979).

    Article  ADS  Google Scholar 

  40. E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979).

    Article  ADS  Google Scholar 

  41. P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1–24 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  42. J.E. Huffman, “Infrared detectors for 2 to 220 μm astronomy”, Proc. SPIE 2274, 157–169 (1995).

    Article  ADS  Google Scholar 

  43. W.W. Hübers, S.G. Pavlov, K. Holldack, U. Schade, and G. Wüstefeld, “Long wavelength response of unstressed and stressed Ge:Ga detectors”, Proc. SPIE 6275, 627505 (2008).

    Article  Google Scholar 

  44. A. Poglish, R.O. Katterloher, R. Hoenle, J.W. Beeman, E.E. Haller, H. Richter, U. Groezinger, N.M. Haegel, and A. Krabbe, “Far-infrared photoconductors for Herschel and SO-FIA”, Proc. SPIE 4855, 115–128 (2003).

    Article  ADS  Google Scholar 

  45. M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006).

    Article  Google Scholar 

  46. A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001).

    Article  ADS  Google Scholar 

  47. B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, and A. V. Sergeev, “Record-low NEP in hot-electron titanium nanobolometers”, IEEE T. Appl. Supercon. 17, 293–297 (2007).

    Article  ADS  Google Scholar 

  48. H.-W. Hübers, “Terahertz heterodyne receivers”, IEEE J. Sel. Top. Quant. 14, 378–391 (2008).

    Article  Google Scholar 

  49. D.J. Benford, “Transition edge sensor bolometers for CMB polarimetry”, http://cmbpol.uchicago.edu/workshops/technology2008/depot/cmbpol_technologies_benford_jcps_4. pdf

  50. P.L. Richards, “Cosmic microwave background experiments — past, present and future”, http://sciencestage.com/d/5334058/

  51. F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Ranges, Akademperiodika, Kiev, 2008. (in Russian).

    Google Scholar 

  52. N. Kopeika, A System Engineering Approach to Imaging, SPIE Optical Eng. Press, Bellingham, 1998.

    Google Scholar 

  53. A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001).

    Article  ADS  Google Scholar 

  54. “Detectors needs for long wavelength astrophysics”, A Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, June 2002; http://safir.gsfc.nasa.gov/docs/ISMDWG_final.pdf

  55. J. Glenn, P.A.R. Ade, M. Amarie, J.J. Bock, S.F. Edgington, A. Goldin, S. Golwala, D. Haig, A.E. Lange, G. Laurent, P.D. Maudkopf, M. Yun, and H. Nguyen, “Current status of Bolocam: a large-format millimeter-wave bolometer camera”, Proc. SPIE 4855, 30–40 (2003).

    Article  ADS  Google Scholar 

  56. G.M. Voellmer, C.A. Allen, M.J. Amato, S.R. Babu, A.E. Bartels, D.J. Benford, R.J. Derro, C.D. Dowell, D.A. Harper, M.D. Jhabvala, S.H. Moseley, T. Rennick, P.J. Shirron, W.W. Smith, and J.G. Staguhn, “Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II”, Proc. SPIE 4855, 63–72 (2003).

    Article  ADS  Google Scholar 

  57. J.G. Staguhn, D.J. Benford, F. Pajot, T.J. Ames, J.A. Chervenak, E.N. Grossman, K.D. Irwin, B. Maffei, S.H. Moseley, T.G. Phillips, C.D. Reintsema, C. Rioux, R.A. Shafer, and G.M. Vollmer, “Astronomical demonstration of superconducting bolometer arrays”, Proc. SPIE 4855, 100–107 (2003).

    Article  ADS  Google Scholar 

  58. T.W. Crowe, R.J. Mattauch, H.-P. Roser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications”, Proc. IEEE 80, 1827–1841 (1992).

    Article  ADS  Google Scholar 

  59. G.L. Carr, M.C. Martin, W.R. McKinney, G.R. Neil, K. Jordan, and G.P. Williams, “High power terahertz radiation from relativistic electrons”, Nature 420, 153 (2002).

    Article  ADS  Google Scholar 

  60. M. Rodwell, E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard, Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, R. Pierson, and B. Brar, “Development of THz transistors and (300–3000 GHz) sub-mm-wave integrated circuits”, The 11th Inter. Symp. on Wireless Personal Multimedia Communications (WPMC 2008); http://www.ece.ucsb.edu/Faculty/Rodwell/publications/2008_9_sept_wpmc_rodwell_digest.pdf

    Google Scholar 

  61. B.S. Williams, “Terahertz quantum-cascade lasers”, Nat. Photonics 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  62. J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985).

    Article  ADS  Google Scholar 

  63. C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, and L. Duband, “WaFIRS: A waveguide far-IR spectrometer: Enabling spectroscopy of high-z galaxies in the far-IR and submillimeter”, Proc. SPIE 4850, 1137–1148 (2003).

    Article  ADS  Google Scholar 

  64. M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006).

    Article  Google Scholar 

  65. B.S. Karasik and R. Cantor, “Optical NEP in hot-electron nanobolometers”, 21 st International Symposium on Space Terahertz Technology, Oxford, 23–25 March, 2010.

    Google Scholar 

  66. J.C. Mather, E.S. Cheng, D.A. Cottingham, R.E. Eplee, D.J. Fixsen, T. Hewagama, R.B. Isaacman, K.A. Jensen, S.S. Meyer, P.D. Noerdlinger, S.M. Read, L.P. Rosen, R.A. Shafer, E.L. Wright, C.L. Bennett, N.W. Boggess, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, G.F. Smoot, R. Weiss, and D.T. Wilkinson, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument”, Astrophys. J. 420, 439–444 (1994).

    Article  ADS  Google Scholar 

  67. J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule, D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson, G. Dobler, J. Dotson, H.K. Eriksen, D. Finkbeiner, D. Fixsen, P. Fosalba, A. Fraisse, C. Hirata, A. Kogut, J. Kristiansen, C. Lawrence, A.M. Magalhaes, M.A. Miville-Deschenes, S. Meyer, A. Miller, S.K. Naess, L. Page, H.V. Peiris, N. Phillips, E. Pierpaoli, G. Rocha, J.E. Vaillancourt, and L. Verde, “A program of technology development and of sub-orbital observations of the cosmic microwave background polarization leading to and including a satellite mission”, A Report for the Astro-2010 Decadal Committee on Astrophysics, April, 2009.

    Google Scholar 

  68. D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett. 26, 101–103 (1975).

    Article  ADS  Google Scholar 

  69. P. LeFur and D.H. Auston, “A kilovolt picosecond optoelectronic switch and Pockels cell”, Appl. Phys. Lett. 28, 21–33 (1976).

    Article  ADS  Google Scholar 

  70. J.A. Valdmani, G. Mourou, and C.W. Gabel, “Picosecond electrooptic sampling system”, Appl. Phys. Lett. 41, 211–212 (1982).

    Article  ADS  Google Scholar 

  71. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with teraHz beams of dielectrics and semiconductors”, J. Opt. Soc. B7, 2006–2015 (1990).

    ADS  Google Scholar 

  72. M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas”, Int. J. Infrared Milli. 27, 531–546 (2006).

    Article  ADS  Google Scholar 

  73. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging”, Appl. Phys. B, DOI 10.1007/s003409900011 (1999).

  74. W.L. Chan, J. Deibel, and D.M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  ADS  Google Scholar 

  75. L. Xu, X.-C. Zhang, and D.H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials”, Appl. Phys. Lett. 61, 1784–1786 (1992).

    Article  ADS  Google Scholar 

  76. E.R. Brown, K.A. McIntosh, F.W. Smith, K.B. Nichols, M.J. Manfra, C.L. Dennis, and J.P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer”, Appl. Phys. Lett. 64, 3311–3313 (1994).

    Article  ADS  Google Scholar 

  77. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55 μm probe”, Appl. Phys. Lett. 77, 1396–1398 (2000).

    Article  ADS  Google Scholar 

  78. M. Suzukia and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femto-second optical pulses”, Appl. Phys. Lett. 86, 163504 (2005).

    Article  ADS  Google Scholar 

  79. H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices”, Appl. Phys. Lett. 92, 163502 (2008).

    Article  ADS  Google Scholar 

  80. D.P. Neikirk, D.B. Rutledge, and M.S. Mucha, “Far-infrared imaging antenna arrays”, Appl. Phys. Lett. 40, 203–205 (1982).

    Article  ADS  Google Scholar 

  81. D.B. Rutledge, D.P. Neikirk, and D.P. Kasilingam, “Integrated-circuit antennas”, in: Infrared and Millimeter Waves, Vol. 10, pp. 1–90, ed. K.J. Button, Academic Press, New York, 1983.

    Google Scholar 

  82. J. Zhang, Y. Hong, S.L. Braunstein, and K.A. Shore, “Terahertz pulse generation and detection with LT-GaAs photoconductive antenna”, IEE P-Optoelectron. 151, 98–101 (2004).

    Article  Google Scholar 

  83. E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region”, Microw. Opt. Techn. Let. 48, 524–529 (2006).

    Article  Google Scholar 

  84. J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583–1591 (2007).

    Article  Google Scholar 

  85. R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors”, P. IRE 47, 1495–1502 (1959).

    Article  Google Scholar 

  86. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011.

    Google Scholar 

  87. T. Ueda, Z. An, and S. Komiyama, “Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Millim. Te.; DOI 10.1007/s10762-010-9659-3 (2010).

    Google Scholar 

  88. A.G.U. Perera, G. Ariyawansaa, P.V.V. Jayaweeraa, S.G. Matsika, M. Buchanan, and H.C. Liu, “Semiconductor terahertz detectors and absorption enhancement using plasmons”, Microelectron. J. 39, 601–606 (2008).

    Article  Google Scholar 

  89. H.C. Liu, H. Luo, C.-Y. Song, Z.R. Wasilewski, A.J. SpringThorpe, and J.C. Cao, “Terahertz quantum well photodetectors”, IEEE J. Sel. Top. Quant. 14, 374–377 (2008).

    Article  Google Scholar 

  90. D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs hetero-junction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004); A.G.U. Perera and W.Z. Shen, “GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared devices”, Opto-Electron Rev. 7, 153–180 (1999).

    Article  ADS  Google Scholar 

  91. H.C. Liu, “Quantum dot infrared photodetector”, Opto-Electron. Rev. 11, 1–5 (2003).

    Google Scholar 

  92. J.A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183–192 (2006).

    Article  Google Scholar 

  93. M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447–453 (2004).

    Article  ADS  Google Scholar 

  94. W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.

    Google Scholar 

  95. E.H. Putley, “Thermal detectors”, in Optical and Infrared Detectors, pp. 71–100, edited by R.J. Keyes, Springer, Berlin, 1977.

    Google Scholar 

  96. P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001.

    Book  Google Scholar 

  97. G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  98. W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. 49, 1335–1386 (1986).

    Article  ADS  Google Scholar 

  99. P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films”, Rep. Prog. Phys. 64, 1339–1338 (2001).

    Article  ADS  Google Scholar 

  100. V.G. Bozhkov, “Semiconductor detectors, mixers, and frequency multipliers for the terahertz band”, Radiophys. Quantum. El. 46, 631–656 (2003).

    Article  ADS  Google Scholar 

  101. A. Van Der Ziel, “Infrared detection and mixing in heavily doped Schottky barrier diodes”, J. Appl. Phys. 47, 2059–2068 (1976).

    Article  ADS  Google Scholar 

  102. H.A. Watson, Microwave Semiconductor Devices and their Circuit Applications, McGraw-Hill, New York, 1969.

    Google Scholar 

  103. E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473–481 (1970).

    Article  ADS  Google Scholar 

  104. D.T. Young and J.C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 53, 2130–2132 (1965).

    Article  Google Scholar 

  105. T.W. Crowe, D.P. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, and K. Hui, “Terahertz sources and detectors”, Proc SPIE 5790, 271–280 (2005).

    Article  ADS  Google Scholar 

  106. H.P. Röser, H.-W. Hübers, E Bründermann, and M.F. Kimmitt, “Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies”, Semicond. Sci. Tech. 11, 1328–1332 (1996).

    Article  ADS  Google Scholar 

  107. T.W. Crowe and W.C.B. Peatman, “GaAs Schottky diodes for mixing applications beyond 1 THz”, 2nd Int. Symp. on Space Terahertz Technology 323–339, Pasadena, February 26–28, 1991, http://www.nrao.edu/meetings/isstt/papers/1991/1991323339.pdf

    Google Scholar 

  108. T.W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz”, Int. J. Infrared Milli. 11, 765–777 (1990).

    Article  Google Scholar 

  109. H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used at submillimeter receivers”, Infrared Phys. 17, 477–483 (1977).

    Article  ADS  Google Scholar 

  110. R. Titz, B. Auel, W. Esch, H.P. Röser, and G.W. Schwaab, “Antenna measurements of open-structure Schottky mixers and determination of optical elements for a heterodyne system at 184, 214 and 287 μm”, Infrared Phys. 30, 435–441 (1990).

    Article  ADS  Google Scholar 

  111. I. Mehdi, G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, F. Maiwald, and A. Maestrini, “THz multiplier circuits”, IEEE MTT-S Intern. Microwave Symp. Digest, 341–344, San Francisco, 2006.

    Google Scholar 

  112. S.M. Marazita, W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, and T.W. Crowe, “Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding”, IEEE T. Electron. Dev. 47, 1152–1156 (2000).

    Article  ADS  Google Scholar 

  113. P. Siegel, R.P. Smith, M.C. Gaidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer”, IEEE T. Microw. Theory 47, 596–604 (1999).

    Article  Google Scholar 

  114. J.A. Copeland, “Diode edge effects on do** profile measurements”, IEEE T. Electron Dev. 17, 404–407 (1970).

    Article  Google Scholar 

  115. V.I. Piddyachiy, V.M. Shulga, A.M. Korolev, and V.V. Myshenko, “High do** density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver”, Int. J. Infrared Milli. 26, 1307–1315 (2005).

    Article  ADS  Google Scholar 

  116. J.L. Hesler and T.W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, http://www.virginiadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf

  117. H. Kazemi, G. Nagy, L Tran, E. Grossman, E.R. Brown, A.C. Gossard, G.D. Boreman, B. Lail, A.C. Young, and J.D. Zimmerman, “Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications”, IEEE/MTT Int. Microwave Symposium, 1367–1370 (2007).

    Google Scholar 

  118. E.R. Brown, A.C. Young, J.E. Bjarnason, J.D. Zimmerman, A.C. Gossard, and H. Kazemi, “Millimeter and sub-millimeter wave performance of an ErAs:InAlGaAs Schottky diode coupled to a single-turn square spiral”, Int. J. High Speed Electron. 17, 383–394 (2007).

    Article  Google Scholar 

  119. http://www.darpa.mil/mto/programs/tift/pdf/MTT_THz_Workshop.pdf

  120. F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D.G. Paveljev, M. Winnerwisser, and G. Winnerwisser, “Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz”, IEEE Microw. Guided W. 9, 198–200 (1999).

    Article  Google Scholar 

  121. D.H. Martin, Spectroscopic Techniques for Far-infrared, Submillimeter and Millimeter Waves, North-Holland, Amsterdam, 1967.

    Google Scholar 

  122. B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995–996 (1952).

    ADS  Google Scholar 

  123. E. Burstein, J.J. Oberly and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89, 331–332 (1953).

    Article  ADS  Google Scholar 

  124. P.R. Bratt, “Impurity germanium and silicon infrared detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 39–142, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977.

    Google Scholar 

  125. J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994).

    Article  ADS  Google Scholar 

  126. G.H. Rieke, M.W. Werner, R.I. Thompson, E.E. Becklin, W.F. Hoffmann, J.R. Houck, F.J. Low, W.A. Stein, and F.C. Witteborn, “Infrared astronomy after IRAS”, Science 231, 807–814 (1986).

    Article  ADS  Google Scholar 

  127. J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81–100 (1986).

    Article  Google Scholar 

  128. Sclar, “Properties of doped silicon and germanium infrared detectors”, Prog. Quant. Electron. 9, 149–257 (1984).

    Article  ADS  Google Scholar 

  129. E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techn. 35, 127–146 (1994)

    Article  ADS  Google Scholar 

  130. N.M. Haegel and E.E. Haller, “Extrinsic germanium photoconductor material: crystal growth and characterization”, Proc. SPIE 659, 188–194 (1986).

    Article  Google Scholar 

  131. J.-Q. Wang, P.I. Richards, J.W. Beeman, J.W. Haegel, and E.E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127–4134 (1986).

    Article  ADS  Google Scholar 

  132. A.G. Kazanskii, P.L. Richards and E.E, Haller, “Far-infrared photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496–497 (1977).

    Article  ADS  Google Scholar 

  133. E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979).

    Article  ADS  Google Scholar 

  134. J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994).

    Article  ADS  Google Scholar 

  135. E. Young, J. Stansberry, K. Gordon, and J. Cadien, “Properties of germanium photoconductor detectors”, in Proc. Conf. ESA SP-481, pp. 231–235, edited by L. Metcalfe, A. Salama, S.B. Peschke, and M.F. Kessler, VilSpa, 2001.

    Google Scholar 

  136. N. Hiromoto, M. Fujiwara, H. Shibai and H. Okuda, “Ge:Ga far-infrared photoconductors for space applications”, Jpn. J. Appl. Phys. 35, 1676–1680 (1996).

    Article  ADS  Google Scholar 

  137. Y. Doi, S. Hirooka, A. Sato, M. Kawada, H. Shibai, Y. Okamura, S. Makiuti, T. Nakagawa, N. Hiromoto, and M. Fujiwara, “Large-format and compact stressed Ge:Ga array for the Astro-F (IRIS) mission”, Adv. Space Res. 30, 2099–2104 (2002).

    Article  ADS  Google Scholar 

  138. E.T. Young, J.T. Davis, C.L. Thompson, G.H. Rieke, G. Rivlis, R. Schnurr, J. Cadien, L. Davidson, G.S. Winters, and K.A. Kormos, “Far-infrared imaging array for SIRTF”, Proc. SPIE 3354, 57–65 (1998).

    Article  ADS  Google Scholar 

  139. A. Poglitsch, C. Waelkens, O.H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The photodetector array camera and spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008).

    Article  Google Scholar 

  140. http://fifi-ls.mpg-garching.mpg.dr/detector.html

  141. http://pacs.mpe.mpg.de/p15n.html

  142. N. Billot, P. Agnese, J.L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J.L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006).

    Article  Google Scholar 

  143. M. Shirahata, S. Matsuura, T. Nakagawa, T. Wada, S. Kamiya, M. Kawada, Y. Sawayama, Y. Doi, H. Kawada, Y. Creten, B. Okcan, W. Raab, and A. Poglitsh, “Development of a far-infrared Ge:Ga monolithic array detector for SPICA a possible application to SPICA”, Proc. SPIE 7741, 77410B (2010).

    Article  ADS  Google Scholar 

  144. J. Farhoomand, D.L. Sisson, and J.W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.Techn. 51, 152–159 (2008).

    Article  ADS  Google Scholar 

  145. M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, and E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18.

  146. H.H. Houge, M.G. Mlynczak, M.N. Abedin, S.A. Masterjohn, and J.E. Huffman, “Far-infrared detector development for space-based Earth observation”, Proc. SPIE 7082, 70820E-1–8 (2008).

    Google Scholar 

  147. J. Bandaru, J.W. Beeman, and E.E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193–199 (2002).

    Article  ADS  Google Scholar 

  148. L.A. Reichertz, J.W. Beeman, B.L. Cardozo, G. Jakob, R. Katterloher, N.M. Haegel, and E.E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006).

    Article  ADS  Google Scholar 

  149. D.R. Khokhlov, I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, “Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors”, Appl. Phys. Lett. 76, 2835–2837 (2000).

    Article  ADS  Google Scholar 

  150. K.G. Kristovskii, A.E. Kozhanov, D.E. Dolzhenko, I.I. Ivanchik, D. Watson, and D.R. Khokhlov, “Photoconductivity of lead telluride-based doped alloys in the submillimeter wavelength range”, Phys. Solid State 46, 122–124 (2004).

    Article  ADS  Google Scholar 

  151. A.N. Akimov, V.G. Erkov, V.V. Kubarev, E.L. Molodtsova, A.E. Klimov, and V.N. Shumskyi, “Photosensitivity of Pb1−x SnxTe:In films in the terahertz region of the spectrum”, Semiconductors 40, 164–168 (2006).

    Article  ADS  Google Scholar 

  152. A. Artamkin, A. Nikorici, L. Ryabova, V. Shklover, and D. Khokhlov, “Continuous focal plane array for detection of terahertz radiation”, Proc. SPIE 6297, 62970B (2006).

    Article  ADS  Google Scholar 

  153. A.N. Akimov, A.E. Klimov, I.G. Neizvestny, V.N. Shumsky, V.V. Kubarev, O.V. Smolin, and E.V. Susov, “Sensitivity of Pb1–xSnxTe films in submillimeter spectral range”, Prikladnaya Fizika 6, 12–17 (2007). (in Russian).

    Google Scholar 

  154. A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz sensitivity of Pb1—xSnxTe:In”, Ferroelectrics 347, 111–119 (2007).

    Article  Google Scholar 

  155. A.G. Milnes, Deep Impurities in Semiconductors, Wiley Interscience, New York, 1973.

    Google Scholar 

  156. B.A. Volkov, L.I. Ryabova, and D.R. Khokhlov, “Mixed-valence impurities in lead telluride-based solid solutions”, Phys.-Usp. 45, 819–846 (2002).

    Article  ADS  Google Scholar 

  157. Yu.G. Troyan, F.F. Sizov, and V.M. Lakeenkov, “Relaxation time and current instabilities in highly resistive PbTe:Ga single crystals”, Ukr. J. Phys. 32, 467–471 (1987).

    Google Scholar 

  158. C. Wilson, L. Frunzio, and D. Prober, “Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas”, Phys. Rev. Lett. 87, 067004 (2001).

    Google Scholar 

  159. C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990).

    Article  ADS  Google Scholar 

  160. E. Burstein, D.N. Langenberg, and B.N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter radiation”, Phys. Rev. Lett. 6, 92–94 (1961).

    Article  ADS  Google Scholar 

  161. A.H. Dayem and R.J. Martin, “Quantum interaction of microwave radiation with tunnelling between superconductors”, Phys. Rev. Lett. 8, 246–248 (1962).

    Article  ADS  Google Scholar 

  162. P.K. Tien and J.P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunnelling between superconductor films”, Phys. Rev. 129, 647–651 (1963).

    Article  ADS  Google Scholar 

  163. P.L. Richards, T.M. Shen, R.E. Harris, and F.L. Lloyd, “Quasiparticle heterodyne mixing in SIS tunnel junctions”, Appl. Phys. Lett. 34, 345–347 (1979).

    Article  ADS  Google Scholar 

  164. G.J. Dolan, T.G. Phillips, and D.P. Woody, “Low-noise 115; GHz mixing in superconducting oxide-barrier tunnel junctions”, Appl. Phys. Lett. 34, 347–349 (1979).

    Article  ADS  Google Scholar 

  165. J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985).

    Article  ADS  Google Scholar 

  166. C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990).

    Article  ADS  Google Scholar 

  167. V.P. Koshelets, S.V. Shitov, L.V. Filippenko, P.N. Dmitriev, A.N. Ermakov, A.S. Sobolev, and M.Yu. Torgashin, “Integrated superconducting sub-mm wave receivers”, Radiophys. Quant. Electr. 46, 618–630 (2003).

    Article  ADS  Google Scholar 

  168. A. Karpov, D. Miller, F. Rice, J.A. Stern, B. Bumble, H.G. LeDuc, and J. Zmuidzinas, “Low noise SIS mixer for far infrared radio astronomy”, Proc. SPIE 5498, 616–621 (2004).

    Article  ADS  Google Scholar 

  169. G. Chattopadhyay, “Future of heterodyne receivers at submillimeter wavelengths”, Digest IRMMW-THz-2005 Conf., 461–462 (2005).

    Google Scholar 

  170. G.N. Gol’tsman, “Hot electron bolometric mixers: new terahertz technology”, Infrared Phys. Techn. 40, 199–206 (1999).

    Article  ADS  Google Scholar 

  171. R. Blundell and K.H. Gundlach, “A quasioptical SIN mixer for 230 GHz frequency range”, Int. J. Infrared Milli. 8, 1573–1579 (1987).

    Article  ADS  Google Scholar 

  172. M. Nahum, P.L. Richards, and C.A. Mears, “Design analysis of a novel hot-electron microbolometer”, IEEE T. Appl. Supercon. 3, 2124–2127 (1993).

    Article  ADS  Google Scholar 

  173. M. Nahum and J. Martinis, “Ultrasensitive hot-electron microbolometer”, Appl. Phys. Lett. 63, 3075–3077 (1993).

    Article  ADS  Google Scholar 

  174. D. Chouvaev, D. Sandgren, M. Tarasov, and L. Kuzmin, “Optical qualification of the normal metal hot-electron microbolometer (NHEB),” 12 th Int. Symp. Space THz Technol., San Diego, 446–456 (2001).

    Google Scholar 

  175. D. Sandgren, D. Chouvaev, M. Tarasov, and L. Kuzmin, “Fabrication and optical characterization of the normal metal hot-electron microbolometer with Andreev mirrors”, Physica C372, 444–447 (2002).

    ADS  Google Scholar 

  176. D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction”, J. Appl. Phys. 89, 6464–6472 (2001).

    Article  ADS  Google Scholar 

  177. D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, “A superconductor-insulator-normal metal bolometer with microwave readout suitable for large-format arrays”, Appl. Phys. Lett. 86, 053505 (2005).

    Google Scholar 

  178. P. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays”, Nature 425, 817–821 (2003).

    Article  ADS  Google Scholar 

  179. P.R. Maloney, N.G. Czakon, P.K. Day, R. Duan, J. Gao, J. Glenn, S. Golwala, M. Hollister, H.G. LeDuc, B. Mazin, O. Noroozian, H.T. Nguyen, J. Sayers, J. Schlaerth, J.E. Vaillancourt, A. Vayonakis, P. Wilson, and J. Zmuidzinas, “The MKID camera”, AIP Conf. Proc. 1185, 176–179 (2009).

    Article  ADS  Google Scholar 

  180. SELEX GALILEO; http://www.selex-sas.com/EN/Common/files/SELEX_Galileo/Products/DLATGS_dsh.pdf.

  181. D. Dooley, “Sensitivity of broadband pyroelectric terahertz detectors continues to improve”, Laser Focus World. May 2010.

    Google Scholar 

  182. http://www.spectrumdetector.com/pdf/datasheets/THZ.pdf

  183. A.L. Woodcraft, R.V. Sudiwal, E. Wakui, and C. Paine, “Hop** conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925–944 (2004).

    Article  ADS  Google Scholar 

  184. Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml

  185. P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284–290 (1999).

    Article  ADS  Google Scholar 

  186. C. Dowell, C.A. Allen, S. Babu, M.M. Freund, M.B. Gardnera, J. Groseth, M. Jhabvala, A. Kovacs, D.C. Lis, S.H. Moseley, T.G. Phillips, R. Silverberg, G. Voellmer, and H. Yoshida, “SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels”, Proc. SPIE 4855, 73–87 (2003).

    Article  ADS  Google Scholar 

  187. http://herschel.esac.esa.int/science_instruments.shtml

  188. G.H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77–115 (2007).

    Article  ADS  Google Scholar 

  189. E.M. Conwell, “High field transport in semiconductors”, Solid State Physics, Suppl. 9, Academic Press, New York, 1967.

    Google Scholar 

  190. T.G. Phillips and K.B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009–1014 (1973).

    Article  ADS  Google Scholar 

  191. E.H. Putley, “InSb submilimeter photoconductive detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 143–167, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977.

    Google Scholar 

  192. http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html

  193. P.R. Norton, “Photodetectors”, in Handbook of Optics, Vol. I, chapter 24, edited by M. Bass, McGraw Hill, New York, 2010.

    Google Scholar 

  194. K.S. Yngvesson, J.-X. Yang, F. Agahi, D. Dai, C. Musante, W. Grammer, and K.M. Lau, “AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments”, Third Int. Symp. Space THz Techn. 688–705 (1992).

    Google Scholar 

  195. Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors”, Semiconductors 42, 1234–1236 (2008).

    Article  ADS  Google Scholar 

  196. H. Moseley and D. McCammon, “High performance silicon hot electron bolometers”, Ninth Int. Workshop on Low Temperature Detectors, AIP Proc. 605, 103–106 (2002).

    ADS  Google Scholar 

  197. K. Seeger, Semiconductor Physics, Springer, Berlin, 1991.

    Google Scholar 

  198. S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, “Millimeter and submillimeter detection using Ga1−xAlxAs/GaAs heterosructures”, Int. J. Infrared Milli. 8, 793–802 (1987).

    Article  ADS  Google Scholar 

  199. J.-X. Yang, F. Agahi, D. Dai, C.F. Musante, W. Grammer, K.M. Lau, and K.S. Yngvesson, “Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers”, IEEE T. Microw. Theory 41, 581–589 (1993).

    Article  Google Scholar 

  200. G.N. Gol’tsman and K.V. Smirnov, “Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures”, JETP Lett. 74, 474–479 (2001).

    Article  ADS  Google Scholar 

  201. A.A. Verevkin, N.G. Ptitsina, K.V. Smirnov, G.N. Gol’tsman, E.M. Gershenzon, and K.S. Ingvesson, “Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K”, JETP Lett. 64, 404–409 (1996).

    Article  ADS  Google Scholar 

  202. T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astr. 20, 285–321 (1982).

    Article  ADS  Google Scholar 

  203. E.M. Gershenzon, G.N. Gol’tsman, I.G. Gogdize, Y.P. Gusev, A.J. Elant’ev, B.S. Karasik, and A.D. Semenov, “Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state”, Superconductivity 3, 1582–1597 (1990).

    Google Scholar 

  204. B. Karasik, G.N. Gol’tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer”, IEEE T. Appl. Supercon. 5, 2232–2235 (1995).

    Article  Google Scholar 

  205. D.E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer”, Appl. Phys. Lett. 62, 2119–2121 (1993).

    Article  ADS  Google Scholar 

  206. A. Skalare, W.R. McGrath, B. Bumble, H.G. LeDuc, P.J. Burke, A.A. Vereijen, R.J. Schoelkopf, and D.E. Prober, “Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer”, Appl. Phys. Lett. 68, 1558–1560 (1996).

    Article  ADS  Google Scholar 

  207. W.R. McGrath, “Novel hot-electron bolometer mixers for submillimeter applications: An overview of recent developments”, Proc. URSI Int. Symp. on Signals, Systems, and Electronics, 147–152 (1995).

    Chapter  Google Scholar 

  208. P.J. Burke, R.J. Schoelkopf, D.E. Prober, A. Skalare, W.R. McGrath, B. Bumble, and H.G. LeDuc, “Length scaling of bandwidth and noise in hot-electron superconducting mixers”, Appl. Phys. Lett. 68, 3344–3346 (1996).

    Article  ADS  Google Scholar 

  209. A.D. Semenov, G.N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in semiconductors and its applications for radiation sensors”, Semicond. Sci. Tech. 15, R1–R16 (2002).

    ADS  Google Scholar 

  210. E.M. Gershenson, M.E. Gershenson, G.N. Goltsman, B.S. Karasik, A.M. Lyul’kin, and A.D. Semenov, “Ultra-fast superconducting electron bolometer”, J. Tech. Phys. Lett. 15, 118–119 (1989).

    Google Scholar 

  211. K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752–2754 (2000).

    Article  ADS  Google Scholar 

  212. Y. Gousev, G. Gol’tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, “Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation”, J. Appl. Phys. 75, 3695–3697 (1994).

    Article  ADS  Google Scholar 

  213. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. Gao, T. Klapwijk, B. Voronov, and G. Gol’tsman, “Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers”, J. Appl. Phys. 100, 184103 (2006).

    Article  Google Scholar 

  214. W.J. Skocpol, M.R. Beasly, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges”, J. Appl. Phys. 45, 4054–4066 (1974).

    Article  ADS  Google Scholar 

  215. A.D. Semenov and H.-W. Hübers, “Frequency bandwidth of a hot-electron mixer according to the hot-spot model”, IEEE T. Appl. Supercon. 11, 196–199 (2001).

    Article  Google Scholar 

  216. http://www.sron.nl/index.php?option=com_content&task=view&id=44&Itemid=111

  217. S.E. Schwarz and B.T. Ulrich, “Antenna-coupled infrared detectors”, J. Appl. Phys. 85, 1870–1873 (1977).

    Article  ADS  Google Scholar 

  218. A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Wiley & Sons, New York 2005.

    Google Scholar 

  219. J. Volakis, Antenna Engineering Handbook, 4th edition, McGraw-Hill, New York, 2007.

    Google Scholar 

  220. A.J. Kreisler and A. Gaugue, “Recent progress in HTSC bolometric detectors at terahertz frequencies”, Proc. SPIE 3481, 457–468 (1998).

    Article  ADS  Google Scholar 

  221. G.N. Gol’tsman, Yu.B. Vachtomin, S.V. Antipov, M.I. Finkel, S.N. Maslennikiv, K.V. Smirnov, S.L. Poluakov, S.I. Svechnikov, N.S. Kaurova, E.V. Grishina, and B.M. Voronov, “NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers”, Proc. SPIE 5727, 95–106 (2005).

    Article  ADS  Google Scholar 

  222. D. Rutledge and M. Muha, “Imaging antenna arrays”, IEEE T. Antennas Propagat. AP-30, 535–540 (1982).

    Article  ADS  Google Scholar 

  223. A.J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range”, Supercond. Sci. Tech. 13, 1235–1245 (2000).

    Article  ADS  Google Scholar 

  224. O. Harnack, B. Karasik, W. McGrath, A. Kleinsasser, and J. Barner, “Submicron-long HTS hot-electron mixers”, Supercond. Sci. Tech. 12, 850–852 (1999).

    Article  ADS  Google Scholar 

  225. B. Karasik, W. McGrath, and M. Gaidis, “Analysis of a high-Tc hot-electron mixer for terahertz applications”, J. Appl. Phys. 81, 1581–1589 (1997).

    Article  ADS  Google Scholar 

  226. F. Ronnung, S. Cherednichenko, G. Gol’tsman, E. Gershen- zon, and D. Winkler, “A nanoscale YBCO mixer optically coupled with a bow tie antenna”, Supercond. Sci. Tech. 12, 853–855 (1999).

    Article  ADS  Google Scholar 

  227. M. Lindgren, M. Currie, C. Williams, T.Y. Hsiang, P.M. Fauchet, R. Sobolewsky, S.H. Moffat, R.A. Hughes, J.S. Preston, and F.A. Hegmann, “Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photoresponse”, Appl. Phys. Lett. 74, 853–855 (1999).

    Article  ADS  Google Scholar 

  228. V.V. Shirotov and Yu.Ya. Divin, “Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies”, Techn. Phys. Lett. 30, 522–524 (2004).

    Article  ADS  Google Scholar 

  229. M.V. Lyatti, D.A. Tkachev, and Yu.Ya. Divin, “Signal and noise characteristics of a terahertz frequency-selective YBa2Cu3O7− Josephson detector”, Techn. Phys. Lett. 32, 860–862 (2006).

    Article  ADS  Google Scholar 

  230. D.J. Benford and S.H. Moseley, “Superconducting transition edge sensor bolometer arrays for submillimeter astronomy”, Proc. Int. Symp. on Space and THz Technology, www.eecs.umich.edu/~jeast/benford_2000_4_1.pdf

  231. D. Olaya, J. Wei, S. Pereverzev, B.S. Karasik, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, and M.E. Gershenson, “An untrasensitive hot-electron bolometer for low-background SMM applications”, Proc. SPIE 6275, 627506 (2006).

    Article  Google Scholar 

  232. K. Irwin, “An application of electrothermal feedback for high-resolution cryogenic particle-detection”, Appl. Phys. Lett. 66, 1998–2000 (1995).

    Article  ADS  Google Scholar 

  233. K. Irwin, G. Hilton, D. Wollman, and J. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback”, Appl. Phys. Lett. 69, 1945–1947 (1996).

    Article  ADS  Google Scholar 

  234. A.T. Lee. P.L. Richards, S.W. Nam, B. Cabrera, and K.D. Irwin, “A superconducting bolometer with strong electrothermal feedback”, Appl. Phys. Lett. 69, 1801–1803 (1996).

    Article  ADS  Google Scholar 

  235. G.C. Hilton, J.M. Martinis, K.D. Irwin, N.F. Bergren, D.A. Wollman, M.E. Huber, S. Deiker, and S.W. Nam, “Microfabricated transition-edge X-ray detectors”, IEEE T. Appl. Supercon. 11, 739–742 (2001).

    Article  Google Scholar 

  236. B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, and R. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors”, Appl. Phys. Lett. 73, 735–737 (1998).

    Article  ADS  Google Scholar 

  237. W. Duncan, W.S. Holland, M.D. Audley, M. Cliffe, T. Hodson, B.D. Kelly, X. Gao, D.C. Gostick, M. MacIntosh, H. McGregor, T. Peacocke, K.D. Irwin, G.C. Hilton, S.W. Deiker, J. Beier, C.D. Reintsema, A.J. Walton, W. Parkes, T. Stevenson, A.M. Gundlach, C. Dunare, and P.A.R. Ade, “SCUBA-2: Develo** the detectors”, Proc. SPIE 4855, 19–29 (2003).

    Article  ADS  Google Scholar 

  238. A.J. Walton, W. Parkes, J.G. Terry, C. Dunare, J.T.M. Stevenson, A.M. Gundlach, G.C. Hilton, K.D. Irwin, J.N. Ullom, W.S. Holland, W. Duncan, M.D. Audley, P.A.R. Ade, R.V. Sudiwala, and E. Schulte, “Design and fabrication of the detector technology for SCUBA-2”, IEE Proc.-A 151, 119–120 (2004).

    Google Scholar 

  239. A.-D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G.C. Hilton, and J.A. Chervenak, “Auxiliary components for kilopixel transition edge sensor arrays”, Solid State Electron. 52, 1619–1624 (2008).

    Article  ADS  Google Scholar 

  240. S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK”, Appl. Opt. 37, 3391–3397 (1998).

    Article  ADS  Google Scholar 

  241. H.F.C. Hoevers, A.C. Bento, M.P. Bruijn, L. Gottardi, M.A.N. Korevaar, W.A. Mels, and P.A.J. de Korte, “Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer”, Appl. Phys. Lett. 77, 4422–4424 (2000).

    Article  ADS  Google Scholar 

  242. M.D. Audley, D.M. Glowacka, D.J. Goldie, A.N. Lasenby, V.N. Tsaneva, S. Withington, P.K. Grimes, C.E. North, G. Yassin, L. Piccirillo, G. Pisano, P.A.R. Ade, G. Teleberg, K.D. Irwin, W.D. Duncan, C.D. Reintsema, M. Halpern, and E.S. Battistellik, “Tests of finline-coupled TES bolometers for COVER”, Digest IRMMW-THz-2007 Conf., 180–181, Cardiff, 2007.

    Google Scholar 

  243. J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, and M.E. Huber, “Superconducting multiplexer for arrays of transition edge sensors”, Appl. Phys. Lett. 74, 4043–4045 (1999).

    Article  ADS  Google Scholar 

  244. P.J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards, and J.T. Skidmore, “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors”, Appl. Phys. Lett. 78, 371–373 (2001).

    Article  ADS  Google Scholar 

  245. The SQUID Handbook, Vol. II: Applications, edited by J. Clarke and A.I. Braginski, Wiley-VCH, Weinheim, 2006.

    Google Scholar 

  246. K.D. Irvin, “SQUID multiplexers for transition-edge sensors”, Physica C 368, 203–210 (2002).

    Article  ADS  Google Scholar 

  247. K.D. Irwin, M.D. Audley, J.A. Beall, J. Beyer, S. Deiker, W. Doriese, W.D. Duncan, G.C. Hilton, W.S. Holland, C.D. Reintsema, J.N. Ullom, L.R. Vale, and Y. Xu, “In-focal-plane SQUID multiplexer”, Nuclear Inst. Methods Phys. Research A520, 544–547 (2004).

    Article  ADS  Google Scholar 

  248. K.D. Irvin and G.C. Hilton, “Transition-edge sensors”, in Cryogenic Particle Detection, pp. 63–149, edited by C. Enss, Springer-Verlag, Berlin, 2005.

    Google Scholar 

  249. T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, and A. Smith, “Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device”, Appl. Phys. Lett. 86, 112511 (2005).

    Article  ADS  Google Scholar 

  250. W.S. Holland, W. Duncan, B.D. Kelly, K.D. Irwin, A.J. Walton, P.A.R. Ade, and E. I. Robson, “SCUBA-2: A new generation submillimeter imager for the James Clerk Maxwell Telescope”, Proc. SPIE 4855, 1–18 (2003).

    Article  ADS  Google Scholar 

  251. A.L. Woodcraft, M.I. Hollister, D. Bintley, M.A. Ellis, X. Gao, W.S. Holland, M.J. MacIntosh, P.A.R. Ade, J.S. House, C.L. Hunt, and R.V. Sudiwala, “Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array”, Proc. SPIE 6275, 62751F (2006).

    Article  Google Scholar 

  252. “SCUBA-2,” http://www.roe.ac.uk/ukatc/projects/scubatwo/

  253. D.J. Benford, J.G. Steguhn, T.J. Ames, C.A. Allen, J.A. Chervenak, C.R. Kennedy, S. Lefranc, S.F. Maher, S.H. Moseley, F. Pajot, C. Rioux, R.A. Shafer, and G.M. Voellmer, “First astronomical images with a multiplexed superconducting bolometer array”, Proc. SPIE 6275, 62751C (2006).

    Article  ADS  Google Scholar 

  254. J. Gildemeister, A. Lee, and P. Richards, “Monolithic arrays of absorber-coupled voltagebiased superconducting bolometers”, Appl. Phys. Lett. 77, 4040–4042 (2000).

    Article  ADS  Google Scholar 

  255. D.J. Benford, G.M. Voellmer, J.A. Chervenak, K.D. Irwin, S.H. Moseley, R.A. Shafer, G.J. Stacey, and J.G. Staguhn, “Thousand-element multiplexed superconducting bolometer arrays”, in Proc. Far-IR, Sub-MM, and MM Detector Workshop, Vol. NASA/CP-2003-211 408, pp. 272–275, edited by J. Wolf, J. Farhoomand, and C.R. McCreight, 2003.

    Google Scholar 

  256. J. Gildemeister, A. Lee, and P. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer”, Appl. Phys. Lett. 74, 868–870 (1999).

    Article  ADS  Google Scholar 

  257. W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, and M.A. Khan, C.A. Saylor, and L.C. Brunal, “Nonresonant detection of terahertz radiation in field effect transistors”, J. Appl. Phys. 91, 9346–9353 (2002).

    Article  ADS  Google Scholar 

  258. A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors”, Appl. Phys. Lett. 89, 131926 (2006).

    Article  ADS  Google Scholar 

  259. Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, “Non resonant response to terahertz radiation by submicron CMOS transistors”, IEICE T. Electr. E89-C, 993–998 (2006).

    Article  Google Scholar 

  260. G.C. Dyer, J.D. Crossno, G.R. Aizin, J. Mikalopas, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer”, Proc. SPIE 7215, 721503 (2009).

    Article  Google Scholar 

  261. W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y.M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: physics and first imaging applications”, J. Infrared Millim. Te. 30, 1319–1337 (2009).

    Google Scholar 

  262. W. Knap, D. Coquillat, N. Dyakonova, F. Teppe, O. Klimenko, H. Videlier, S. Nadar, J. Łusakowski, G. Valusis, F. Schustera, B. Giffardd, T. Skotnickie, C. Gaquiere, and A. El Fatimy, “Plasma excitations in field effect transistors for terahertz detection and emission”, C.R. Phys. 11, 433–443 (2010).

    Article  ADS  Google Scholar 

  263. W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675–677 (2002).

    Article  ADS  Google Scholar 

  264. F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors”, Appl. Phys. Lett. 89, 222109 (2006).

    Article  ADS  Google Scholar 

  265. R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, and C. Fenouillet-Beranger, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006).

    Article  ADS  Google Scholar 

  266. V.I. Gavrilenko, E.V. Demidov, K.V. Marem’yanin, S.V. Morozov, W. Knap, and J. Lusakowski, “Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor”, Semiconductors 41, 232–234 (2007).

    Article  ADS  Google Scholar 

  267. Y.M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano, “Self oscillation of the plasma waves in a dual grating gates HEMT device”, Int. Conf. Indium Phosphide and Related Materials, Conf. Proceedings, 534–537, Matsue, 2007.

    Google Scholar 

  268. A.M. Hashim, S. Kasai, and H. Hasegawa, “Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction”, Superlattice Microst. 44, 754–760 (2008).

    Article  ADS  Google Scholar 

  269. V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M.S. Shur, “Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator”, J. Phys.: Conf. Ser. 38, 228–233 (2006).

    Article  ADS  Google Scholar 

  270. X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors”, Appl. Phys. Lett. 81, 1627–1630 (2002).

    Article  ADS  Google Scholar 

  271. M. Dyakonov, and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465–2468 (1993).

    Article  ADS  Google Scholar 

  272. M. Dyakonov and M. Shur, “Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid”, IEEE T. Electron Dev. 43, 1640–1646 (1996).

    Article  ADS  Google Scholar 

  273. M. Shur and V. Ryzhii, “Plasma wave electronics”, Int. J. High Speed Electr. Syst. 13, 575–600 (2003).

    Article  Google Scholar 

  274. A. Eguiluz, T.K. Lee, J.J. Quinn, and K.W. Chiu, “Interface excitations in metal-insulator-semiconductor structures”, Phys. Rev. B11, 4989–4993 (1975).

    ADS  Google Scholar 

  275. S. Kang, P.J. Burke, L.N. Pfeifer, and K.W. West, “Resonant frequency response of plasma wave detector”, Appl. Phys. Lett. 89 213512 (2006).

    Google Scholar 

  276. F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, “Terahertz resonant detection by plasma waves in nanometric transistors”, Acta Phys. Pol. A113, 815–820 (2008).

    ADS  Google Scholar 

  277. D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current”, Phys. Rev. B73, 125328 (2006).

    ADS  Google Scholar 

  278. E. Öjefors, A. Lisauskas, D. Glaab, H.G. Roskos, and U.R. Pfeiffer, lrdTerahertz imaging detectors in CMOS technology”, J. Infrared Millmi. Te. 30, 1269–1280 (2009).

    Google Scholar 

  279. E. Öjefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-St. Circ. 44, 1968–1976 (2009).

    Article  Google Scholar 

  280. P.J. Burke, “Carbon nanotube devices for GHz to THz applications”, Proc. SPIE 5593, 52–61 (2004).

    Article  ADS  Google Scholar 

  281. C.M. Sze. Physics of Semiconductor Devices, Wiley, New York, 1981.

    Google Scholar 

  282. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinom, and V.Ya. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures”, J. Appl. Phys. 106, 084507-1–6 (2009).

    Article  ADS  Google Scholar 

  283. V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures”, J. Appl. Phys. 107, 054512-1–7 (2010).

    ADS  Google Scholar 

  284. S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Berlin, 2004.

    Google Scholar 

  285. Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, “Terahertz photon-assisted tunneling in carbon nanotube quantum dots”, J. Appl. Phys. 103, 034307 (2008).

    Article  ADS  Google Scholar 

  286. Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor”, Appl. Phys. Lett. 95, 083123-1–3 (2009).

    Article  ADS  Google Scholar 

  287. K.S. Yngvesson, K. Fu, B. Fu, R. Zannoni, J. Nicholson, S.H. Adams, A. Ouarraoui, J. Donovan and E. Polizzi, “Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes”, Proc. 19th Int. Symp. Space THz Techn., Groningen, 304–313 (2008).

    Google Scholar 

  288. Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z.F. Ren, “Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes”, Appl. Phys. Lett. 85, 2607–2609 (2004).

    Article  ADS  Google Scholar 

  289. Y. Wang, Q. Wu, X. He, X. Sun, and T. Gui, “Radiation properties of carbon nanotubes antenna at terahertz/infrared range”, Int. J. Infrared Milli. 29, 35–42 (2008).

    Article  ADS  Google Scholar 

  290. O. Astavief, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa, “Single-photon detector in the microwave range”, Appl. Phys. Lett. 80, 4250–4252 (2002).

    Article  ADS  Google Scholar 

  291. H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, P. Kleind- schmid, S. Giblin, and S. Komiyama, “Isolated quantum dot in application to terahertz photon counting”, Phys. Rev. B73, 081310:1–4 (2006).

    ADS  Google Scholar 

  292. X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector”, Appl. Phys. Lett. 89, 031117-1–3 (2006).

    ADS  Google Scholar 

  293. T. Ueda, Z. An, S. Komiyama, and K. Hirakawa, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer”, J. Appl. Phys. 103, 093109:1–7 (2008).

    Google Scholar 

  294. T. Ueda and S. Komiyama, “Novel ultra-sensitive detectors in the 10–50 μm wavelength range”, Sensors 10, 8411–8423 (2010).

    Article  Google Scholar 

  295. D. Seliuta, I. Kaalynas, V. Tamoinas, S. Balakauskas, Z. Martnas, S. Amontas, G. Valuis, A. Lisauskas, H.G. Roskos, and K. Köhler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature”, Electron. Lett. 44, 825–827 (2006).

    Article  Google Scholar 

  296. G. Valuis, D. Seliuta, V. Tamoinas, R. Simnikis, S. Balakauskas, and I. Kaalynas, “Selective and broadband terahertz sensors based on GaAs nanostructures”, Workshop THz Wave Technology, Bucharest, 19–20 May, 2008.

    Google Scholar 

  297. J.-H. Dai, J.-H. Lee, Y.-L. Lin, and S.-C. Lee, “In(Ga)As quantum rings for terahertz detectors”, J. Appl. Phys. 47, 2924–2926 (2008).

    Article  Google Scholar 

  298. S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “High-performance quantum ring detector for the 1–3 terahertz range”, Appl. Phys. Lett. 96, 231103-1–3 (2010).

    Article  ADS  Google Scholar 

  299. S. Kim, J.D. Zimmerman, P. Focardi, A.C. Gossard, D.H. Wu, and M.S. Sherwin, “Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors”, Appl. Phys. Lett. 92, 253508-1–3 (2008).

    ADS  Google Scholar 

  300. E.A. Shaner, A.D. Grine, J.L. Reno, M.C. Wanke, and S.J. Allen, “Next-generation detectors: Plasmon grating-gate devices have potential as tunable terahertz detectors”, Laser Focus World, January 2008.

    Google Scholar 

  301. G.C. Dyer, J.D. Crossno, G.R. Aizin, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometr”, J. Phys.: Condens. Mat. 21, 1958031-1–6 (2009).

    Article  Google Scholar 

  302. T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure”, Opt. Express 14, 4815–4825 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rogalski.

About this article

Cite this article

Rogalski, A., Sizov, F. Terahertz detectors and focal plane arrays. Opto-Electron. Rev. 19, 346–404 (2011). https://doi.org/10.2478/s11772-011-0033-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-011-0033-3

Keywords

Navigation