Log in

Quantum structures for multiband photon detection

  • Published:
Opto-Electronics Review

Abstract

The work describes multiband photon detectors based on semiconductor micro-and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum dots-in-a-well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunnelling quantum dot infrared photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunnelling, while the dark current is blocked by AlGaAs/InGaAs tunnelling barriers placed in the structure. A two-colour infrared detector with photoresponse peaks at ∼6 and ∼17 μm at room temperature will be discussed. A homojunction or heterojunction interfacial workfunction internal photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goldberg, P.N. Uppal, and M. Winn, “Detection of buried land mines using a dual-band LWIR/LWIR QWIP focal plane array”, Infrared Phys. & Technol. 44, 427 (2003).

    Article  ADS  Google Scholar 

  2. B. Kochman, A.D. Stiff-Roberts, S. Chakrabarti, J.D. Phillips, S. Krishna, J. Singh, and P. Bhattacharya, “Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors”, IEEE. J. Quant. Electron. 39, 459 (2003).

    Article  Google Scholar 

  3. H.C. Liu, M. Gao, J. McCaffrey, Z.R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors”, Appl. Phys. Lett. 78, 79 (2001).

    Article  ADS  Google Scholar 

  4. L. Jiang, S.S. Li, N.T. Yeh, J.I. Chyi, C.E. Ross, and K.S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K”, Appl. Phys. Lett. 82, 1986–1988 (2003).

    Article  ADS  Google Scholar 

  5. A. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D.A. Cardimona, and S.W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ p ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector”, Appl. Phys. Lett. 81, 1369 (2002).

    Article  ADS  Google Scholar 

  6. B. Aslan, H.C. Liu, M. Korkusinski, S.J. Cheng, and P. Hawrylak, “Response spectra from mid-to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors”, Appl. Phys. Lett. 82, 639 (2003).

    Article  Google Scholar 

  7. Z. Ye and J.C. Campbell, “InAs quantum dot infrared photodetectors with In0.15Ga0.85As strain-relief cap layers”, J. Appl. Phys. 92, 7462–7468 (2002).

    Article  ADS  Google Scholar 

  8. J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconductivity in self-organized InAs quantum dots”, Appl. Phys. Lett. 72, 2020 (1998).

    Article  ADS  Google Scholar 

  9. S. Maimon, E. Finkman, and G. Bahir, “Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors”, Appl. Phys. Lett. 73, 2003 (1998).

    Article  ADS  Google Scholar 

  10. D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors”, Appl. Phys. Lett. 73, 1937 (1998).

    Article  ADS  Google Scholar 

  11. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S.G. Matsik, and A.G.U. Perera, “Three-colour (λ p1 ∼3.8 μm, λ p2 ∼ 8.5 μm, and λ p3 ∼23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector”, Appl. Phys. Lett. 83, 2745–2747 (2003).

    Article  ADS  Google Scholar 

  12. G. Ariyawansa, A.G.U. Perera, G.S. Raghavan, G. von Winckel, A. Stintz, and S. Krishna, “Effect of well width on three colour quantum dots-in-a-well infrared detectors”, IEEE Photon. Technol. Lett. 17, 1064 (2005).

    Article  Google Scholar 

  13. B.F. Levine, “Quantum-well infrared photodetectors”, J. Appl. Phys., 74, R1–R81 (1993).

    Article  ADS  Google Scholar 

  14. A. Amtout, S. Raghavan, P. Rotella, G. v. Winckel, A. Stintz, and S. Krishna, “Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector”, J. Appl. Phys. 96, 3782–3786 (2004).

    Article  ADS  Google Scholar 

  15. S.V. Bandara, S.D. Gunapala, J.K. Liu, E.M. Luong, J.M. Mumolo, W. Hong, D.K. Sengupta, and M.J. McKelvey, “10–16 μm broad band quantum well infrared photodetector”, Appl. Phys. Lett. 72, 2427 (1998).

    Article  ADS  Google Scholar 

  16. A.G.U. Perera, W.Z. Shen, S.G. Matsik, H.C. Liu, M. Buchanan, and W.J. Schaff, “GaAs/AlGaAs quantum well photodetectors with a cutoff wavelength at 28 μm”, Appl. Phys. Lett. 72, 1596–1598 (1998).

    Article  ADS  Google Scholar 

  17. P. Bhattacharya, X.H. Su, S. Chakrabarti, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a tunnelling quantum dot infrared photodetector operating at room temperature”, Appl. Phys. Lett. 86, 191106 (2005).

    Google Scholar 

  18. J. Urayama, T.B. Norris, J. Singh, and P. Bhattacharya, “Observation of phonon bottleneck in quantum dot electronic relaxation”, Phys. Rev. Lett. 86, 4930 (2001).

    Article  ADS  Google Scholar 

  19. E. Kim, A. Madhukar, Z. Ye, and J.C. Campbell, “High detectivity InAs quantum dot infrared photodetectors”, Appl. Phys. Lett. 84, 3277 (2004).

    Article  ADS  Google Scholar 

  20. H. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study”, Phys. Rev. B56, 4696–4701 (1997).

    ADS  Google Scholar 

  21. W.Z. Shen, A.G.U. Perera, H.C. Liu, M. Buchanan, and W.J. Schaff, “Bias effects in high performance GaAs homojunction far-infrared detectors”, Appl. Phys. Lett. 71, 2677–2679 (1997).

    Article  ADS  Google Scholar 

  22. D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs heterojunction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004).

    Article  ADS  Google Scholar 

  23. H.C. Liu, P.H. Wilson, M. Lamm, A.G. Steele, Z.R. Wasilewski, J. Li, M. Buchanan, and J.G. Simmonsa, “Low dark current dual band infrared photodetector using thin AlAs barriers and G-X mixed intersubband transition in GaAs quantum wells”, Appl. Phys. Lett. 64, 475 (1994).

    Article  ADS  Google Scholar 

  24. H.C. Liu, C.Y. Song, A. Shen, M. Gao, Z.R. Wasilewski, and M. Buchanan, “GaAs/AlGaAs quantum-well photodetector for visible and middle infrared dual-band detection”, Appl. Phys. Lett. 77, 2437 (2000).

    Article  ADS  Google Scholar 

  25. M.P. Touse, G. Karunasiri, K.R. Lantz, H. Li, and T. Mei, “Near-and mid-infrared detection using GaAs/InxGa1xAs/InyGa1yAs multiple step quantum wells”, Appl. Phys. Lett. 86, 093501-1 (2005).

    Google Scholar 

  26. K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, and R.J. Malik, “Infrared photoelectron tunnelling spectroscopy of strongly coupled quantum wells”, Phys. Rev. B39, 8029 (1989).

    ADS  Google Scholar 

  27. S. Chakrabarti, X.H. Su, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Characteristics of a multicolour InGaAs-GaAs quantum-dot infrared photodetector”, IEEE Photon. Technol. Lett. 17, 178–180 (2005).

    Article  Google Scholar 

  28. D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, V.I. Gavrilenko, and A.A. Belyanin, “High performance single emitter homojunction interfacial work function far infrared detectors”, J. Appl. Phys. 95, 512–519 (2004).

    Article  ADS  Google Scholar 

  29. S. Adachi, “Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design”, J. Appl. Phys. 53, 5863 (1982).

    Article  ADS  Google Scholar 

  30. M.D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 eV”, Phys. Rev. 127, 768 (1962).

    Article  ADS  Google Scholar 

  31. G. Ariyawansa, M.B.M. Rinzan, D.G. Esaev, S.G. Matsik, G. Hastings, A.G.U. Perera, H.C. Liu, B.N. Zvonkov, and V.I. Gavrilenko, “Near-and far-infrared p-GaAs dual-band detector”, Appl. Phys. Lett. 86, 143510–143513 (2005).

    Article  Google Scholar 

  32. F. Binet, J.Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors”, Appl. Phys. Lett. 69, 1202 (1996).

    Article  ADS  Google Scholar 

  33. S.K. Zhang, W.B. Wang, I. Shtau, F. Yun, L. He, H. Morkoc, X. Zhou, M. Tamargo, R.R. Alfano, “Backilluminated GaN/AlGaN heterojunction ultraviolet photodetector with high internal gain”, Appl. Phys. Lett. 81, 4862 (2002).

    Article  ADS  Google Scholar 

  34. E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semi-conductor ultraviolet photodetectors”, Semicond. Sci. Technol. 18, R33–R51 (2003).

    Article  ADS  Google Scholar 

  35. S.G. Matsik, M.B.M. Rinzan, D.G. Esaev, A.G.U. Perera, H.C. Liu, and M. Buchanan, “20 μm cutoff heterojunction interfacial work function internal photoemission detectors”, Appl. Phys. Lett. 84, 3435–3437 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570W (2005).

About this article

Cite this article

Perera, A.G.U. Quantum structures for multiband photon detection. Opto-Electron. Rev. 14, 99–108 (2006). https://doi.org/10.2478/s11772-006-0013-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-006-0013-1

Keywords

Navigation