Log in

Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats

  • Full Paper
  • Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

We report the species composition of subaerial epixylic algae and cyanobacteria from a South-East Asian mountain rainforest locality in Cibodas, West Java. Green algae (Trebouxiophyceae, Chlorophyceae, Trentepohliales) were dominant and Cyanobacteria were the second most frequent group. We specifically concentrated on the comparison of species composition of closed primary forest and open antropogenic spaces. Trentepohliales and Cyanobacteria dominated in open spaces with higher light intensities, whereas closed forest localities were dominated by trebouxiophycean coccal green algae. There was a significantly higher algal diversity in open spaces than in closed forest samples indicating the limiting effect of light on subaerial algal communities of closed tropical forests. A number of isolated strains and morphotypes probably represent undescribed taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOSIM:

analysis of similarities

NMDS:

non-metric multidimensional scaling

References

  • Bischoff H.W. & Bold H.C. 1963. Phycological Studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Public. 6318: 1–95.

    Google Scholar 

  • Bonnet E. & Van de Peer Y. 2002. ZT: a software tool for simple and partial Mantel tests. J. Stat. Soft. 7: 1–12.

    Google Scholar 

  • Brand F. & Stockmayer S. 1925. Analyse der aerophilen Grünalgenanflüge, insbesondere der proto-pleurococcoiden Formen. Arch. Protistenk. 52: 265–355.

    Google Scholar 

  • Carballo J.L., Olabarria C. & Osuna T.G. 2002. Analysis of four macroalgal assemblages along the Pacific Mexican coast during and after the 1997–98 El Nino. Ecosystems 5: 749–760.

    Article  Google Scholar 

  • Cayuela L., Benayas J.M., Justel A. & Salas-Rey J. 2006. Modelling tree diversity in a highly fragmented tropical montane landscape. Glob. Ecol. Biogeogr. 15: 602–613.

    Article  Google Scholar 

  • Clarke K.R. 1993. Non-parametric multivariate analysis of changes in community structure. Austr. J. Ecol. 18: 117–143.

    Article  Google Scholar 

  • Cox E.R. & Hightower J. 1972. Some corticolous algae of McMinn county, Tennessee, U.S.A. J. Phycol. 8: 203–205.

    Google Scholar 

  • Ettl H. & Gärtner G. 1995. Syllabus der Boden-, Luft-und Flechtenalgen. G. Fischer Verl., Stuttgart, 721 pp.

    Google Scholar 

  • Gärtner G. & Ingolić E. 2003. Further studies on Desmococcus Brand emend. Vischer (Chlorophyta, Trebouxiophyceae) and a new species Desmococcus spinocystis sp nov from soil. Biologia 58: 517–523.

    Google Scholar 

  • Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electr. 4: 1–9.

    Google Scholar 

  • Handa S. & Nakano T. 1988. Some corticolous algae from Miyajima Island, western Japan. Nova Hedwigia 46: 165–186.

    Google Scholar 

  • Hariot P. 1889. Notes sur le genre Trentepohlia Martius. J. Bot. 3: 128–149.

    Google Scholar 

  • Henley W.J., Hironaka J.L., Guillou L., Buchheim M.A., Buchheim J.A., Fawley M.W. & Fawley K.P. 2004. Phylogenetic analysis of the ‘Nannochloris-like’ algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia 43: 641–652.

    Google Scholar 

  • Komárek J. & Fott B. 1983. Chlorococcales. Das Phytoplankton des Süßwassers, Bd. 7. Schweizerbart, Stuttgart, 1043 pp.

    Google Scholar 

  • Komárek J. & Anagnostidis K. 2005. Cyanoprokaryota 2. Teil/Part 2: Oscillatoriales. Elsevier/Spektrum, Heidelberg, 759 pp.

    Google Scholar 

  • Krienitz L., Hegewald E.H., Hepperle D., Huss V.A.R., Rohrs T. & Wolf M. 2004. Phylogenetic relationship of Chlorella and Parachlorella gen. nov (Chlorophyta, Trebouxiophyceae). Phycologia 43: 529–542.

    Article  Google Scholar 

  • Laundon J.R. 1985. Desmococcus olivaceus — the name of the comon subaerial green alga. Taxon 34: 671–672.

    Article  Google Scholar 

  • Lefranc M., Thenot A., Lepere U. & Debroas D. 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl. Environ. Microbiol. 71: 5935–5942.

    Article  PubMed  CAS  Google Scholar 

  • López-Bautista J.M., Rindi F. & Guiry M.D. 2006. Molecular systematics of the subaerial green algal order Trentepohliales: an assessment based on morphological and molecular data. Int. J. Syst. Evol. Microbiol. 56: 1709–1715.

    Article  PubMed  CAS  Google Scholar 

  • Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Mikhailyuk T.I. 1999. Eusubaerial algae of Kaniv Nature Reserve (Ukraine). Ukr. Botan. Zhurn. 56: 507–513. (In Ukrainian)

    Google Scholar 

  • Mikhailyuk T.I., Tsarenko P.M., Nevo E. & Wasser S.P. 2001. Additions to the study of aerophytic eukaryotic algae of Israel. Int. J. Algae 3: 19–39.

    Google Scholar 

  • Nakano T., Handa S. & Takeshita S. 1991. Some corticolous algae from the Taishaku-kyô Gorge, western Japan. Nova Hedwigia 52: 427–451.

    Google Scholar 

  • Neustupa J. 2003. The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwigia 76: 487–505.

    Article  Google Scholar 

  • Neustupa J. 2004. Two new aerophytic species of the genus Podohedra Düringer (Chlorophyceae). Algol. Stud. 112: 1–16.

    Article  Google Scholar 

  • Neustupa J. 2005. Investigations on the genus Phycopeltis (Trentepohliaceae, Chlorophyta) from South-East Asia, including the description of two new species. Cryptog. Algol. 26: 229–242.

    Google Scholar 

  • Neustupa J. & Šejnohová L. 2003. Marvania aerophytica sp. nov. — a new aerial tropical green alga. Biologia 58: 503–507.

    Google Scholar 

  • Neustupa J., Eliáš M. & Šejnohová L. 2007. A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84: 51–63.

    Article  Google Scholar 

  • Niinemets Ü. 1998. Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs. Pl. Ecol. 134: 1–11.

    Article  Google Scholar 

  • Nifinluri T., Clearwater M.J. & van Gardingen P. 1999. Measurement of gap size and understorey light intensities after logging in Central Kalimantan, pp. 65–70. In: Sist P., Sabogal C. & Byron Y. (eds.), Management of secondary and loggedover forests in Indonesia, Center for International Forestry Research, Bogor.

  • Printz H. 1939. Vorarbeiten zu einer Monographie der Trentepohliaceen. Nytt. Mag. Naturvbidensk. 80: 137–210.

    Google Scholar 

  • Rico A. & Gappa J.L. 2006. Intertidal and subtidal fouling assemblages in a Patagonian harbour (Argentina, southwest Atlantic). Hydrobiologia 563: 9–18.

    Article  Google Scholar 

  • Rindi F., Sherwood A.R. & Guiry M.D. 2005. Taxonomy and distribution of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in the Hawaiian Islands. Phycologia 44: 270–284.

    Article  Google Scholar 

  • Rindi F., López-Bautista J.M., Sherwood A.R. & Guiry M.D. 2006a. Morphology and phylogenetic position of Spongiochrysis hawaiiensis gen. et sp. nov., the first known terrestrial member of the order Cladophorales (Ulvophyceae, Chlorophyta). Int. J. Syst. Evol. Microbiol. 56: 913–922.

    Article  PubMed  Google Scholar 

  • Rindi F., Guiry M.D. & Lopez-Bautista J.M. 2006b. New records of Trentepohliales (Ulvophyceae, Chlorophyta) from Africa. Nova Hedwigia 83: 431–449.

    Article  Google Scholar 

  • Romari K. & Vaulot D. 2004. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol. Oceanogr. 49: 784–798.

    Google Scholar 

  • Salleh A. & Milow P. 1999. Notes on Trentepohlia dialepta (Nylander) Hariot (Trentepohliaceae, Chlorophyta) and sporangia of some other species of Trentepohlia Mart. from Malaysia. Micronesica 31: 373–378.

    Google Scholar 

  • Sandgren C.D., Hall S.A. & Barlow S.B. 1996. Siliceous scale production in chrysophyte and synurophyte algae. 1. Effects of silica-limited growth on cell silica content, scale morphology, and the construction of the scale layer of Synura petersenii. J. Phycol. 32: 675–692.

    Article  CAS  Google Scholar 

  • Sarma P. 1986. The freshwater Chaetophorales of New Zealand. Nova Hedwigia Beih. 58: 1–169.

    Google Scholar 

  • Thompson R.H. & Wujek D.H. 1997. Trentepohliales: Cephaleuros, Phycopeltis and Stomatochroon. Morphology, taxonomy and ecology. Science Publishers, Enfield, 149 pp.

    Google Scholar 

  • de Wildemann E. 1890. Les Trentepohlia des Indes Néerlandaises. Ann. Jard. Bot. de Buit. 9: 127–142.

    Google Scholar 

  • de Wildemann E. 1897. Notes sur quelques espčces du genre Trentepohlia Martius. Ann. Soc. Belg. Micr. 21: 97–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neustupa, J., Škaloud, P. Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63, 806–812 (2008). https://doi.org/10.2478/s11756-008-0102-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0102-3

Key words

Navigation