Log in

Treatment Options for Acute Seizure Care

Use of New Formulations

  • Disease Management
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The advent of new anticonvulsants, the resurgence of the ketogenic diet, and the currently available surgical techniques mean that practitioners have many options for long term prophylaxis of seizure recurrence. Unfortunately, breakthrough seizures still occur. In some situations, an additional dose of the patient’s maintenance medication, or adjustment of the daily dose, is the most appropriate course of action for the management of such breakthroughs. However, in some situations, the patient may be unwilling or unable to cooperate and so oral administration of anticonvulsants is not possible. Until recently, only benzodiazepines, phenytoin and phenobarbital (phenobarbitone) have been available for parenteral administration; however, alternative treatment options have been developed: diazepam gel for rectal administration, fosphenytoin (a phenytoin prodrug) and an intravenous formulation of valproic acid (sodium valproate).

An intravenous formulation of diazepam has been long used for seizure treatment and has shown good efficacy. The gel formulation showed >60% efficacy for preventing seizures over 12 to 24 hours in 2 controlled studies. No life-threatening adverse reactions were reported. Fosphenytoin is rapidly converted to phenytoin with a conversion half-life of 8 to 15 minutes following intravenous administration, and can be given in a variety of solutions. It may also be administered intramuscularly. Fosphenytoin infusion has not been associated with tissue necrosis and there have been fewer cardiac complications than are seen with intravenous infusion of phenytoin. Intravenous valproic acid shows linear pharmacokinetics, and administration by this route has been demonstrated to maintain therapeutic concentrations in patients and offers an alternative when patients cannot take the drug orally. Intravenous valproic acid has been shown to be well tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gastaut H. Classification of Status Epilepticus. In: Delgado-Escueta AV, Wasterlain GC, editors. Status epilepticus: mechanisms of brain damage and treatment. New York: RavenPress, 1992

    Google Scholar 

  2. Theodore WH, Porter RJ, Albert P, et al. The secondarily generalized tonic-clonic seizure: a videotape analysis. Neurology 1994; 44: 1403–7

    Article  PubMed  CAS  Google Scholar 

  3. Dreifuss FE, Rosman NP, Cloyd JC, et al. A comparison of rectal diazepam gel and placebo for acute repetitive seizures. N Engl J Med 1998; 338(26): 1869–75

    Article  PubMed  CAS  Google Scholar 

  4. Pellock JM. Status epilepticus. In: Dodson WE, Pellock JM, editors. Pediatric epilepsy: diagnosis and therapy. New York: Demos Publications 1993: 197–206

    Google Scholar 

  5. Moolenaar F, Bakker S, Visser J, et al. Biopharmaceutics of rectal administration of drug in man: IX. Comparative biopharmaceutics of diazepam after single rectal, oral, intramuscular and intravenous administration in man. Int J Pharm 1980; 5: 127–37

    Article  CAS  Google Scholar 

  6. Lee K, Taudorf K, Hvorslev V. Prophylactic treatment with valproic acid and diazepam in children with febrile convulsions. Acta Pediatr Scand 1986; 75: 593–7

    Article  CAS  Google Scholar 

  7. Camfield CS, Camfield PR, Smith E, et al. Home use of rectal diazepam to prevent status epilepticus in children with connective disorders. J Child Neurol 1989; 4: 125–6

    Article  PubMed  CAS  Google Scholar 

  8. Alldredge BK, Wall DB, Ferriero DM. Effect of prehospital treatment on the outcome of status epilepticus in children. Pediatr Neurol 1995; 12: 213–6

    Article  PubMed  CAS  Google Scholar 

  9. Kriel RL, Cloyd CL, Hadsall RS. Home use of rectal diazepam for cluster and prolonged seizures: efficacy, adverse reaction, quality of life, and cost analysis. Pediatr Neurol 1991; 7: 13–7

    Article  PubMed  CAS  Google Scholar 

  10. Langslet A, Bemerg A, Bredsen JE, et al. Plasma concentration of diazepam and N-desmethyldiazepam in newborn infants after intravenous, intramuscular, rectal and oral administration. Acta Pediatr Scand 1978; 67: 699–704

    Article  CAS  Google Scholar 

  11. Seigier RS. The administration of rectal diazepam for acute management of seizures. J Emerg Med 1990; 8: 155–9

    Article  Google Scholar 

  12. Package insert, Diastat. In: Physicians’ desk reference. 52nd ed. Montvale (NJ): Medical Economics Company, 1998: 3199-203

  13. Mitchell WG, Shellenberger K, Groves I, et al. Rectal diazepam gel (Diastat) for acute repetitive seizures: results of a double-blind, placebo-controlled study in children and adults with epilepsy [abstract]. American Epilepsy Society (AES) Meeting; 1996 Dec; San Francisco

  14. Dhillon S, Richens A. Valproic acid and diazepam interaction in vivo. Br J Clin Pharmacol 1982; 13(4): 553–60

    PubMed  CAS  Google Scholar 

  15. Laegreid L, Kyllerman M, Hedner T, et al. Benzodiazepine amplification of valproate teratogenic effects in children of mothers with absence epilepsy. Neuropediatrics 1993; 24: 88–92

    Article  PubMed  CAS  Google Scholar 

  16. Merritt HH, Putnam TJ. A new series of anticonvulsant drugs tested by experiments on animals. Arch Neurol Psychiatry 1938; 39: 1003–15

    CAS  Google Scholar 

  17. Painter MJ. Therapy of neonatal seizures. Cleve Clin J Med 1988; 56 Suppl.: S124–31

    Google Scholar 

  18. Painter MJ, Pippenger C, Wasterlein C, et al. Phenobarbital and phenytoin in neonatal seizures: metabolism and tissue distribution. Neurology 1981; 31: 1107–12

    Article  PubMed  CAS  Google Scholar 

  19. Levy LL, Fenichel GM. Diphenylhydantoin activated seizures. Neurology 1965; 15: 716–22

    Article  PubMed  CAS  Google Scholar 

  20. Arnold K, Gerber N. The rate of decline of diphenylhydantoin in human plasma. Clin Pharmacol Ther 1970; 11: 121–35

    PubMed  CAS  Google Scholar 

  21. Lunde PKM, Anders R, Yaffe SJ, et al. Plasma protein binding of diphenylhydantoin in man: interaction with other drugs and the effect of temperature and plasma dilution. Clin Pharmacol Ther 1970; 11: 846–55

    PubMed  CAS  Google Scholar 

  22. Chiba K, Ishiizaki T, Muri H, et al. Michaelis-Menten pharma-cokinetics of diphenylhydantoin and application in the pediatric age patient. J Pediatr 1980; 96: 479–84

    Article  PubMed  CAS  Google Scholar 

  23. Glazko AJ. Phenytoin: chemistry and methods of determination. In: Levy RH, Penry JK, editors. Antiepileptic drugs. 3rd ed. New York: Raven Press, 1989: 159-76

    Google Scholar 

  24. Earnst MP, Marx JA, Drury LR. Complications of intravenous phenytoin for acute treatment of seizures: recommendations for usage. JAMA 1983; 249: 762–5

    Article  Google Scholar 

  25. Cloyd JC, Busch DE, Sauduk RJ. Concentration-time profile of phenytoin after admixture with small volumes of intravenous fluids. Am J Hosp Pharm 1978; 35: 45–8

    PubMed  CAS  Google Scholar 

  26. Serrano EE, Wilder BJ. Intramuscular administration of diphenylhydantoin. Arch Neurol 1974; 31: 276–8

    Article  PubMed  CAS  Google Scholar 

  27. Stella V, Higuchi T. Esters of hydantoic acid as prodrugs of hydantoins. J Pharm Sci 1973; 62: 962

    Article  PubMed  CAS  Google Scholar 

  28. Quon CY, Stampfi HE. In-vitro hydrolysis of ACC-9653 (phosphate ester prodrug of phenytoin) by human, dog, rat blood and tissues [abstract]. Pharm Res 1987; 3 Suppl.: 1349

    Google Scholar 

  29. Smith RD, Brown BS, Maher RW, et al. Pharmacology of ACC-9653 (phenytoin prodrug). Epilepsia 1989; 30 Suppl. 2: S15–21

    Article  PubMed  CAS  Google Scholar 

  30. Browne TR, Davoudi H, Donn KH, et al. Bioavailability of ACC-9653 (phenytoin prodrug). Epilepsia 1989; 30 Suppl. 2: S27–32

    Article  PubMed  Google Scholar 

  31. Browne TR, Szabo GK, McEntagert C, et al. Bioavailability studies of drugs with non-linear pharmacokinetics: II. Absolute bioavailability of intravenous phenytoin prodrug at therapeutic phenytoin serum concentration determined by double stable isotope technique. J Clin Pharmacol 1993; 33: 246–52

    PubMed  CAS  Google Scholar 

  32. Cerebyx (fosphenytoin sodium injection) package insert. Morris Plains (NJ): Parke-Davis, 1996

  33. Eldon MA, Loewen GR, Voightman RE, et al. Pharmacokinetics and tolerance of fosphenytoin and phenytoin administration intravenously to healthy subjects. Can J Neurol Sci 1993; 20: 5180

    Google Scholar 

  34. Miceli JJ, Karp JR. Plasma protein binding interaction of ACC-9653 and carbamazepine, diazepam, phenobarbital, phenytoin, and valproic acid. Morris Plains (NJ): Parke-Davis, RR 764–01620, Jan 18, 1991

    Google Scholar 

  35. Gerber N, Mayo DC, Donn KH, et al. Safety, tolerance, and pharmacokinetics of intravenous doses of phosphate ester of 3-hydroxymethyl-5-diphenyl hydantoin: a new prodrug of phenytoin. J Clin Pharmacol 1988; 28: 1023–32

    PubMed  CAS  Google Scholar 

  36. Leppik IE, Boucher BA, Wilder BJ, et al. Pharmacokinetics and safety of phenytoin prodrug given IV in patients. Neurology 1990; 40: 456–60

    Article  PubMed  CAS  Google Scholar 

  37. Chan YC, Bavda LT, Bobadilla LC, et al. Metabolism and disposition of 14-C-ACC-9653, 3-phosphoromethyl-(4-14-C) -5,5-diphenylhydantoin, in rats [abstract]. FASEB J 1988; 2: A1063

    Google Scholar 

  38. Lai C, Moore P, Matier WL, et al. Comparative pharmacokinetics and bioavailability of sodium capsule and IM administration of ACC-9653, aprodrug of phenytoin in dogs [abstract]. Fed Proc 1987; 46: 867

    Google Scholar 

  39. Broumer K, Matier WL, Quon CY. Absolute bioavailability of phenytoin after IV 3-phosphoryloxymethyl phenytoin disodium [abstract]. Clin Pharmacol Ther 1988; 43: 178

    Google Scholar 

  40. Fischer J, Turnbull T, Uthmann B, et al. Safety, tolerance, and pharmacokinetics of intravenous loading doses of fosphenytoin (Cerebyx) vs dilantin [abstract]. Neurology 1995; 45 Suppl. 4: 202

    Google Scholar 

  41. Eldon MA, Loewen GR, Voightmann RE, et al. Safety, tolerance, and pharmacokinetics of intravenous fosphenytoin [abstract]. Clin Pharmacol Ther 1993; 53: 212

    Google Scholar 

  42. Jamerson BD, Dukes GE, Brouwer KLR, et al. Venous irritation related to intravenous administration of phenytoin vs fosphenytoin. Pharmacotherapy 1994; 14: 47–52

    PubMed  CAS  Google Scholar 

  43. Legarda S, Maria BL, Matsuo F, et al. Safety, tolerance, and pharmacokinetics of fosphenytoin, a phenytoin prodrug, in status epilepticus [abstract]. Epilepsia 1993; 34 Suppl. 6: 60

    Google Scholar 

  44. Marchetti A, Magar R, Fischer J, et al. A pharmacoeconomic evaluation of intravenous fosphenytoin (Cerebyx®) versus intravenous phenytoin (Dilantin®) in hospital emergency departments. Clin Ther 1996; 18(5): 953–66

    Article  PubMed  CAS  Google Scholar 

  45. Morton LD, Pellock JM, Gilman JT, et al. Fosphenytoin pharmacokinetics and safety in pediatric patients [abstract]. Ann Neurol 1997; 42(3): 504

    Google Scholar 

  46. Morton LD, Pellock JM, Maria BL, et al. Fosphenytoin safety and pharmacokinetics in children [abstract]. Epilepsia 1997; 38 Suppl. 8: 194

    Google Scholar 

  47. Price DJ. Intravenous valproate: experience in neurosurgery. R Soc Med Int Cong Symp Ser 1989; 152: 197–203

    Google Scholar 

  48. Moore AJ, Bell BA, Berry DJ. Intravenous sodium valproate in neurosurgery: repeat dose pharmacokinetic study and safety assessment in neurosurgical patients. R Soc Med Int Congr Symp Ser 1989; 152: 204–7

    Google Scholar 

  49. Devinsky O, Leppik I, Willmore LJ, et al. Safety of intravenous valproate. Ann Neurol 1995; 38: 670–4

    Article  PubMed  CAS  Google Scholar 

  50. Marlow N, Cooke RWI. Intravenous sodium valproate in the neonatal intensive care unit. R Soc Med Int Cong Symp Ser 1989; 152: 208–10

    Google Scholar 

  51. Klotz U, Antonin KH. Pharmacokinetics and bioavailability of sodium valproate. Clin Pharmacol Ther 1977; 21(6): 736–43

    PubMed  CAS  Google Scholar 

  52. Perucca E, Gatti G, Frigo GM, et al. Pharmacokinetics of valproic acid after oral and intravenous administration. Br J Clin Pharmacol 1978; 5: 313–8

    Article  CAS  Google Scholar 

  53. Bryson SM, Verna N, Scott P, et al. The pharmacokinetics of valproic acid in young and elderly subjects. Br J Clin Pharmacol 1983; 16: 104–5

    Article  PubMed  CAS  Google Scholar 

  54. Mehta AC, Calvert R, Rigby J, et al. Pharmacokinetics of sodium valproate in epileptic patients after intravenous bolus administration. Clin Hosp Pharm 1980; 5: 329–31

    Google Scholar 

  55. Perucca E, Gatti G, Frigo GM, et al. Disposition of sodium valproate in epileptic patients. Br J Clin Pharmacol 1978; 5: 495–9

    Article  PubMed  CAS  Google Scholar 

  56. Granneman GR, Lamm JE, Cavanaugh JH. Assessment of pharmacokinetics of sodium valproate injectable [abstract]. Epilepsia 1989; 30: 668

    Google Scholar 

  57. Cloyd JC, Kriel RL, Fischer JH. Valproic acid pharmacokinetics in children: discontinuation of concomitant antiepileptic drug therapy. Neurology 1985; 35: 1623–7

    Article  PubMed  CAS  Google Scholar 

  58. Pisani FD, DiPerri RG. Intravenous valproate: effects on plasma and saliva phenytoin levels. Neurology 1981; 31: 467–70

    Article  PubMed  CAS  Google Scholar 

  59. Levy RH, Shen DD. Valproic acid: absorption, distribution, and excretion. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 605–19

    Google Scholar 

  60. Cavanaugh JH, Hussein Z, Lamm J, et al. Pharmacokinetics of multiple oral dose divalproex sodium after intravenous loading dose administration in healthy volunteers. Drug Invest 1994; 7: 1–7

    CAS  Google Scholar 

  61. Hussein Z, Patterson KJ, Lamm JE, et al. Effect of infusion duration on valproate pharmacokinetics. Biopharm Drug Dispos 1993; 14: 389–99

    Article  PubMed  CAS  Google Scholar 

  62. Giroud M, Gras D, Escousse A, et al. Use of injectable valproic acid in status epilepticus: a pilot study. Drug Invest 1993; 5(3): 154–9

    Google Scholar 

  63. Tartara A, Moglia A, Verri AP, et al. Effects of sodium valproate administered acutely intravenously on human and experimental EEG foci. Farmaco (Prat) 1980; 35: 626–31

    CAS  Google Scholar 

  64. Warter JM, Marescaux C, Brandt C, et al. Sodium valproate associated with phenobarbital: effects on ammonia metabolism on humans. Epilepsia 1983; 34(5): 628–33

    Article  Google Scholar 

  65. Ramsay RE. Evaluation of the safety of intravenous valproate [abstract]. Epilepsia 1995; 36 Suppl. 3: S67

    Google Scholar 

  66. Recommended product labelling of intravenous valproate, Abbott Laboratories. In: Physicians’ desk reference. 52nd ed. Montvale (NJ): Medical Economics Company, 1998: 419-21

  67. Aggernaes H, Kirkegaard C, Magelund G. The effect of sodium valproate on serum Cortisol levels in healthy subjects and depressed patients. Acta Psychiatr Scand 1987; 77: 170–4

    Article  Google Scholar 

  68. Gidal B, Spencer N, Maly M, et al. Valproate-mediated disturbances of hemostasis: relationship to dose and plasma concentration. Neurology 1994; 44: 1418–22

    Article  PubMed  CAS  Google Scholar 

  69. Davis R, Peters DH, McTavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72

    Article  PubMed  CAS  Google Scholar 

  70. Bryant AE, Dreifuss FE. Valproic acid fatalities: III. US experience since 1986. Neurology 1996; 46: 465–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, L.D., Pellock, J.M. Treatment Options for Acute Seizure Care. CNS Drugs 10, 405–416 (1998). https://doi.org/10.2165/00023210-199810060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199810060-00002

Keywords

Navigation