Log in

Drug Interactions with Patient-Controlled Analgesia

  • Review Article
  • Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Patient-controlled analgesia (PCA) has become standard procedure in the clinical treatment of pain. Its widespread use in patients with all kinds of diseases opens a variety of possible interactions between analgesics used for PCA and other drugs that might be administered concomitantly to the patient. Many of these drug interactions are of little clinical importance. However, some drug interactions have been reported to result in serious clinical problems.

Drug interactions can either predominantly affect the pharmacokinetics or pharmacodynamics of the drug. Most important pharmacokinetic drug interactions occur at the level of drug metabolism or protein binding. Acceleration of methadone metabolism caused by cytochrome P450 (CYP) 3A4 induction by antiretroviral drugs or rifampicin (rifampin) has caused methadone withdrawal symptoms. Lack of morphine formation from codeine as a result of CYP2D6 inhibition by quinidine results in an almost complete loss of the analgesic effects of codeine. Alterations of methadone protein binding caused by an inhibition of α1-acid glycoprotein synthesis by alkylating substances are another possibility for predominantly pharmacokinetically based drug interactions during PCA. Furthermore, inhibition of P-glycoprotein by anticancer drugs could result in altered transmembrane transport of morphine, methadone or fentanyl, although this has not been shown to be of clinical relevance.

Synergistic effects of systemically administered Opioids with spinally or topically delivered Opioids or anaesthetics have been reported frequently. The same is true for the opioid-sparing effects of coadministered non-opioid analgesics. Antidepressants, anticonvulsants or α2-adrenoreceptor agonists have also been shown to exert additive analgesic effects when administered together with an Opioid. Inconsistent findings, however, are reported regarding the treatment of patients with opioid-induced nausea and sedation, since coadministration of anti-emetics either increased or decreased the respective adverse effects or revealed additional unwanted drug effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Table III

Similar content being viewed by others

References

  1. Lehmann KA. Patient-controlled intravenous analgesia for postoperative pain relief. In: Max M, Portenoy R, Laska E, editors. Advances in pain research and therapy. New York: Raven Press, 1991: 481–523

    Google Scholar 

  2. Badner NH, Bourne RB, Rorabeck CH, et al. Addition of morphine to intra-articular bupivacaine does not improve analgesia following knee joint replacement. Reg Anesth 1997; 22(4): 347–50

    CAS  PubMed  Google Scholar 

  3. Fredman B, Zohar E, Ganim T, et al. Bupivacaine infiltration into the neurovascular bundle of the prostatic nerve does not improve postoperative pain or recovery following transvesical prostatectomy. J Urol 1998; 159(1): 154–6

    CAS  PubMed  Google Scholar 

  4. Kalso E, Heiskanen T, Rantio M, et al. Epidural and subcutaneous morphine in the management of cancer pain: a doubleblind cross-over study. Pain 1996; 67(2-3): 443–9

    CAS  PubMed  Google Scholar 

  5. Moller IW, Dinesen K, Sondergard S, et al. Effect of patientcontrolled analgesia on plasma catecholamine, cortisol and glucose concentrations after cholecystectomy. Br J Anaesth 1988; 61(2): 160–4

    CAS  PubMed  Google Scholar 

  6. Matsumoto S, Mitsuhata H, Akiyama H, et al. The effect of subcutaneous administration of buprenorphine with patient controlled analgesia system for post-operative pain relief. Masui 1994; 43(11): 1709–13

    CAS  PubMed  Google Scholar 

  7. Striebel HW, Olmann T, Spies C, et al. Patient-controlled intranasal analgesia (PCINA) for the management of postoperative pain: a pilot study. J Clin Anesth 1996; 8(1): 4–8

    CAS  PubMed  Google Scholar 

  8. Olsen GD. Morphine binding to human plasma proteins. Clin Pharmacol Ther 1975; 17(1): 31–5

    CAS  PubMed  Google Scholar 

  9. Garrett ER, Chandran VR. Pharmacokinetics of morphine and its surrogates VI: bioanalysis, solvolysis kinetics, solubility, pK’a values, and protein binding of buprenorphine. J Pharm Sci 1985; 74(5): 515–24

    CAS  PubMed  Google Scholar 

  10. Meuldermans WE, Hurkmans RM, Heykants JJ. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. Arch Int Pharmacodyn Ther 1982; 257(1): 4–19

    CAS  PubMed  Google Scholar 

  11. Belpaire FM, Bogaert MG. Binding of alfentanil to human alpha 1-acid glycoprotein, albumin and serum. Int J Clin Pharmacol Ther Toxicol 1991; 29(3): 96–102

    CAS  PubMed  Google Scholar 

  12. Bower S, Sear JW, Roy RC, et al. Effects of different hepatic pathologies on disposition of alfentanil in anaesthetized patients. Br J Anaesth 1992; 68(5): 462–5

    CAS  PubMed  Google Scholar 

  13. Chauvin M, Lebrault C, Levron JC, et al. Pharmacokinetics of alfentanil in chronic renal failure. Anesth Analg 1987; 66(1): 53–6

    CAS  PubMed  Google Scholar 

  14. Hynynen M, Hynninen M, Soini H, et al. Plasma concentration and protein binding of alfentanil during high-dose infusion for cardiac surgery. Br J Anaesth 1994; 72(5): 571–6

    CAS  PubMed  Google Scholar 

  15. Lemmens HJ, Burm AG, Bovill JG, et al. Pharmacodynamics of alfentanil. The role of plasma protein binding. Anesthesiology 1992; 76(1): 65–70

    CAS  PubMed  Google Scholar 

  16. Macfie AG, Magides AD, Reilly CS. Disposition of alfentanil in burns patients. Br J Anaesth 1992; 69(5): 447–50

    CAS  PubMed  Google Scholar 

  17. van den Nieuwenhuyzen MC, Engbers FH, Burm AG, et al. Target-controlled infusion of alfentanil for postoperative analgesia: contribution of plasma protein binding to intra-patient and inter-patient variability. Br J Anaesth 1999; 82(4): 580–5

    PubMed  Google Scholar 

  18. Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68(1): 1–4

    CAS  PubMed  Google Scholar 

  19. Lemmens HJ. Pharmacokinetic-pharmacodynamic relationships for Opioids in balanced anaesthesia. Clin Pharmacokinet 1995; 29(4): 231–42

    CAS  PubMed  Google Scholar 

  20. Abramson FP. Methadone plasma protein binding: alterations in cancer and displacement from alpha 1-acid glycoprotein. Clin Pharmacol Ther 1982; 32(5): 652–8

    CAS  PubMed  Google Scholar 

  21. Inturrisi CE, Colburn WA, Kaiko RF, et al. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther 1987; 41(4): 392–401

    CAS  PubMed  Google Scholar 

  22. Romach MK, Piafsky KM, Abel JG, et al. Methadone binding to orosomucoid (alpha 1-acid glycoprotein): determinant of free fraction in plasma. Clin Pharmacol Ther 1981; 29(2): 211–7

    CAS  PubMed  Google Scholar 

  23. Belpaire FM, Bogaert MG. Binding of alfentanil to human alpha 1-acid glycoprotein, albumin and serum. Int J Clin Pharmacol Ther Toxicol 1991; 29(3): 96–102

    CAS  PubMed  Google Scholar 

  24. Abramson FP. Methadone plasma protein binding: alterations in cancer and displacement from alpha 1-acid glycoprotein. Clin Pharmacol Ther 1982; 32(5): 652–8

    CAS  PubMed  Google Scholar 

  25. Eap CB, Cuendet C, Baumann P. Binding of d-methadone, 1-methadone, and dl-methadone to proteins in plasma of healthy volunteers: role of the variants of alpha 1-acid glycoprotein. Clin Pharmacol Ther 1990; 47(3): 338–46

    CAS  PubMed  Google Scholar 

  26. Abramson FP, Lutz MP. The effects of phenytoin dosage on the induction of alpha 1-acid glycoprotein and antipyrine clearance in the dog. Eur J Drug Metab Pharmacokinet 1986; 11(2): 135–43

    CAS  PubMed  Google Scholar 

  27. Mroszczak EJ, Lee FW, Combs D, et al. Ketorolac tromethamine absorption, distribution, metabolism, excretion, and pharmacokinetics in animals and humans. Drug Metab Dispos 1987; 15(5): 618–26

    CAS  PubMed  Google Scholar 

  28. Levy M, Zylber-Katz E, Rosenkranz B. Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet 1995; 28(3): 216–34

    CAS  PubMed  Google Scholar 

  29. Zylber-Katz E, Granit L, Levy M. Plasma protein binding of dipyrone metabolites in man. Eur J Clin Pharmacol 1985; 29(1): 67–71

    CAS  PubMed  Google Scholar 

  30. Bower S. The uptake of fentanyl by erythrocytes. J Pharm Pharmacol 1982; 34(3): 181–5

    CAS  PubMed  Google Scholar 

  31. Russo H, Audran M, Bressolle F, et al. Displacement of thiopental from human serum albumin by associated drugs. J Pharm Sci 1993; 82(5): 493–7

    CAS  PubMed  Google Scholar 

  32. Fitzgibbon DR, Ready LB. Intravenous high-dose methadone administered by patient controlled analgesia and continuous infusion for the treatment of cancer pain refractory to high-dose morphine. Pain 1997; 73(2): 259–61

    CAS  PubMed  Google Scholar 

  33. Shir Y, Eimerl D, Magora F, et al. Plasma concentrations of methadone during postoperative patient-controlled extradural analgesia. Br J Anaesth 1990; 65(2): 204–9

    CAS  PubMed  Google Scholar 

  34. Aguirre C, Rodriguez-Sasiain JM, Calvo R. Decrease in penbutolol protein binding as a consequence of treatment with some alkylating agents. Cancer Chemother Pharmacol 1994; 34(1): 86–8

    CAS  PubMed  Google Scholar 

  35. Eap CB, Cuendet C, Baumann P. Selectivity in the binding of psychotropic drugs to the variants of alpha-1 acid glycoprotein. Naunyn Schmiedebergs Arch Pharmacol 1988; 337(2): 220–4

    CAS  PubMed  Google Scholar 

  36. Herve F, Duche JC, d’Athis P, et al. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics 1996; 6(5): 403–15

    CAS  PubMed  Google Scholar 

  37. Bastomsky CH, Dent RR, Tolis G. Elevated serum concentrations of thyroxine-binding globulin and caeruloplasmin in methadone-maintained patients. Clin Biochem 1977; 10(3): 124–6

    CAS  PubMed  Google Scholar 

  38. Garrido MJ, Jiminez R, Gomez E, et al. Influence of plasmaprotein binding on analgesic effect of methadone in rats with spontaneous withdrawal. J Pharm Pharmacol 1996; 48(3): 281–4

    CAS  PubMed  Google Scholar 

  39. Ueda K, Cornwell MM, Gottesman MM, et al. The mdrl gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem Biophys Res Commun 1986; 141(3): 956–62

    CAS  PubMed  Google Scholar 

  40. Debenham PG, Kartner N, Siminovitch L, et al. DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression. Mol Cell Biol 1982; 2(8): 881–9

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cavet ME, West M, Simmons NL. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Br J Pharmacol 1996; 118(6): 1389–96

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Decorti G, Rosati A, Candussio L, et al. Characterization of multidrug transporters in a normal renal tubular cell line resistant to doxorubicin. Multidrug transporters in the LLC-PK(1) cell line and its resistant counterpart. Biochem Pharmacol 2001; 61(1): 61–6

    CAS  PubMed  Google Scholar 

  43. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989; 86(2): 695–8

    CAS  PubMed  PubMed Central  Google Scholar 

  44. van der Valk P, van Kalken CK, Ketelaars H, et al. Distribution of multi-drug resistance-associated P-glycoprotein in normal and neoplastic human tissues. Analysis with 3 monoclonal antibodies recognizing different epitopes of the P-glycoprotein molecule. Ann Oncol 1990; 1(1): 56–64

    PubMed  Google Scholar 

  45. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Demeule M, Labelle M, Regina A, et al. Isolation of endothelial cells from brain, lung, and kidney: expression of the multidrug resistance p-glycoprotein isoforms. Biochem Biophys Res Commun 2001; 281(3): 827–34

    CAS  PubMed  Google Scholar 

  47. Takeguchi N, Ichimura K, Koike M, et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. Transplantation 1993; 55(3): 646–50

    CAS  PubMed  Google Scholar 

  48. Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 2000; 68(3): 231–7

    CAS  PubMed  Google Scholar 

  49. Schinkel AH, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96(4): 1698–705

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huwyler J, Drewe J, Gutmann H, et al. Modulation of morphine-6-glucuronide penetration into the brain by P-glycoprotein. Int J Clin Pharmacol Ther 1998; 36(2): 69–70

    CAS  PubMed  Google Scholar 

  51. **e R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdrla (−/−) and mdrla (+/+) mice. Br J Pharmacol 1999; 128(3): 563–8

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zong J, Pollack GM. Morphine antinociception is enhanced in mdrla gene-deficient mice. Pharm Res 2000; 17(6): 749–53

    CAS  PubMed  Google Scholar 

  53. Thompson SJ, Koszdin K, Bernards CM. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 2000; 92(5): 1392–9

    CAS  PubMed  Google Scholar 

  54. Lötsch J, Tegeder I, Angst MS, et al. Antinociceptive effects of morphine-6-glucuronide in homozygous MDRla P-glycoproteinknockout and in wildtype mice in the hotplate test. Life Sci 2000; 66(24): 2393–403

    PubMed  Google Scholar 

  55. Drewe J, Ball HA, Beglinger C, et al. Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol 2000; 50(3): 237–46

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Waters CM, Krejcie TC, Avram MJ. Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells. Anesthesiology 2000; 93(3): 825–31

    CAS  PubMed  Google Scholar 

  57. Henthorn TK, Liu Y, Mahapatro M, et al. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther 1999; 289(2): 1084–9

    CAS  PubMed  Google Scholar 

  58. Bouer R, Barthe L, Philibert C, et al. The roles of P-glycoprotein and intracellular metabolism in the intestinal absorption of methadone: in vitro studies using the rat everted intestinal sac. Fundam Clin Pharmacol 1999; 13(4): 494–500

    CAS  PubMed  Google Scholar 

  59. Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001; 69(3): 114–21

    CAS  PubMed  Google Scholar 

  60. Lin JH, Chiba M, Chen IW, et al. Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A and p-glycoprotein induction. Drug Metab Dispos 1999; 27(10): 1187–93

    CAS  PubMed  Google Scholar 

  61. Kakyo M, Sakagami H, Nishio T, et al. Immunohistochemical distribution and functional characterization of an organic anion transporting Polypeptide 2 (oatp2). FEBS Lett 1999; 445(2-3): 343–6

    CAS  PubMed  Google Scholar 

  62. Hakvoort A, Haselbach M, Galla HJ. Active transport properties of porcine choroid plexus cells in culture. Brain Res 1998; 795(1–2): 247–56

    CAS  PubMed  Google Scholar 

  63. Scism JL, Powers KM, Artru AA, et al. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-delta 2-valproic acid in rabbits. Drug Metab Dispos 1997; 25(12): 1337–46

    CAS  PubMed  Google Scholar 

  64. Gao B, Hagenbuch B, Kullak-Ublick GA, et al. Organic aniontransporting Polypeptides mediate transport of Opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 2000; 294(1): 73–9

    CAS  PubMed  Google Scholar 

  65. Uwai Y, Saito H, Inui K. Interaction between methotrexate and nonsteroidal anti-inflammatory drugs in organic anion transporter. Eur J Pharmacol 2000; 409(1): 31–6

    CAS  PubMed  Google Scholar 

  66. Mulato AS, Ho ES, Cihlar T. Nonsteroidal anti-inflammatory drugs efficiently reduce the transport and cytotoxicity of adefovir mediated by the human renal organic anion transporter 1. J Pharmacol Exp Ther 2000; 295(1): 10–5

    CAS  PubMed  Google Scholar 

  67. Trumper L, Monasterolo LA, Elias MM. Probenecid protects against in vivo acetaminophen-induced nephrotoxicity in male Wistar rats. J Pharmacol Exp Ther 1998; 284(2): 606–10

    CAS  PubMed  Google Scholar 

  68. Kato Y, Igarashi T, Sugiyama Y Both cMOAT/MRP2 and another unknown transporter(s) are responsible for the biliary excretion of glucuronide conjugate of the nonpeptide angiotensin II antagonist, telmisartan. Drug Metab Dispos 2000; 28(10): 1146–8

    CAS  PubMed  Google Scholar 

  69. Morikawa A, Goto Y, Suzuki H, et al. Biliary excretion of 17beta-estradiol 17beta-D-glucuronide is predominantly mediated by cMOAT/MRP2. Pharm Res 2000; 17(5): 546–52

    CAS  PubMed  Google Scholar 

  70. Tamai I, Nezu J, Uchino H, et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 2000; 273(1): 251–60

    CAS  PubMed  Google Scholar 

  71. Fattinger K, Cattori V, Hagenbuch B, et al. Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting Polypeptides, Oatpl and Oatp2. Hepatology 2000; 32(1): 82–6

    CAS  PubMed  Google Scholar 

  72. Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 2000; 11(3): 383–93

    CAS  PubMed  Google Scholar 

  73. Lacy SA, Hitchcock MJ, Lee WA, et al. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol Sci 1998; 44(2): 97–106

    CAS  PubMed  Google Scholar 

  74. Wada S, Tsuda M, Sekine T, et al. Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. J Pharmacol Exp Ther 2000; 294(3): 844–9

    CAS  PubMed  Google Scholar 

  75. Cihlar T, Lin DC, Pritchard JB, et al. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 1999; 56(3): 570–80

    CAS  PubMed  Google Scholar 

  76. Uwai Y, Saito H, Hashimoto Y, et al. Interaction and transport of thiazide diuretics, loop diuretics, and acetazolamide via rat renal organic anion transporter rOAT1. J Pharmacol Exp Ther 2000; 295(1): 261–5

    CAS  PubMed  Google Scholar 

  77. Takeda M, Tojo A, Sekine T, et al. Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity. Kidney Int 1999; 56(6): 2128–36

    CAS  PubMed  Google Scholar 

  78. Cavet ME, West M, Simmons NL. Fluoroquinolone (Ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells. Br J Pharmacol 1997; 121(8): 1567–78

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ooie T, Suzuki H, Terasaki T, et al. Characterization of the transport properties of a quinolone antibiotic, fleroxacin, in rat choroid plexus. Pharm Res 1996; 13(4): 523–7

    CAS  PubMed  Google Scholar 

  80. Minamino T, Tamai M, Itoh Y, et al. In vivo cisplatin resistance depending upon canalicular multispecific organic anion transporter (cMOAT). Jpn J Cancer Res 1999; 90(10): 1171–8

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Morin RA, Lyness WH. Potentiation of morphine analgesia after pretreatment with probenecid or sulfinpyrazone. Pharmacol Biochem Behav 1983; 18(6): 885–9

    CAS  PubMed  Google Scholar 

  82. **e R, Bouw MR, Hammarlund-Udenaes M. Modelling of the blood-brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport. Br J Pharmacol 2000; 131(8): 1784–92

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–83

    CAS  PubMed  Google Scholar 

  84. Vree TB, van Dongen RT, Koopman-Kimenai PM. Codeine analgesia is due to codeine-6-glucuronide, not morphine. Int J Clin Pract 2000; 54(6): 395–8

    CAS  PubMed  Google Scholar 

  85. Findlay JW, Jones EC, Butz RF, et al. Plasma codeine and morphine concentrations after therapeutic oral doses of codeinecontaining analgesics. Clin Pharmacol Ther 1978; 24(1): 60–8

    CAS  PubMed  Google Scholar 

  86. Poulsen L, Brosen K, Arendt-Nielsen L, et al. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 1996; 51(3–4): 289–95

    CAS  PubMed  Google Scholar 

  87. Sindrup SH, Brosen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 1995; 5(6): 335–46

    CAS  PubMed  Google Scholar 

  88. Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 1997; 25(1): 1–4

    CAS  PubMed  Google Scholar 

  89. King CD, Rios GR, Green MD, et al. Comparison of stably expressed rat UGT1.1 and UGT2B1 in the glucuronidation of Opioid compounds. Drug Metab Dispos 1997; 25(2): 251–5

    CAS  PubMed  Google Scholar 

  90. Green MD, King CD, Mojarrabi B, et al. Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 1998; 26(6): 507–12

    CAS  PubMed  Google Scholar 

  91. Green MD, Belanger G, Hum DW, et al. Glucuronidation of Opioids, carboxylic acid-containing drugs, and hydroxylated xenobiotics catalyzed by expressed monkey UDP-glucuronosyltransferase 2B9 protein. Drug Metab Dispos 1997; 25(12): 1389–94

    CAS  PubMed  Google Scholar 

  92. Wahlström A, Lenhammar L, Ask B, et al. Tricyclic antidepressants inhibit Opioid receptor binding in human brain and hepatic morphine glucuronidation. Pharmacol Toxicol 1994; 75: 23–7

    PubMed  Google Scholar 

  93. Bhargava HN, Rahmani NH, Villar VM, et al. Effects of naltrexone on pharmacodynamics and pharmacokinetics of intravenously administered morphine in the rat. Pharmacology 1993; 46(2): 66–74

    CAS  PubMed  Google Scholar 

  94. Lawrence AJ, Michalkiewicz A, Morley JS, et al. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions. Biochem Pharmacol 1992; 43: 2335–40

    CAS  PubMed  Google Scholar 

  95. Aasmundstad TA, Morland J. Differential inhibition of morphine glucuronidation in the 3- and 6-position by ranitidine in isolated hepatocytes from guinea pig. Pharmacol Toxicol 1998; 82(6): 272–9

    CAS  PubMed  Google Scholar 

  96. Rane A, Gawronska S, Svensson JO. Natural (−)- and unnatural (+)-enantiomers of morphine: comparative metabolism and effect of morphine and phenobarbital treatment. J Pharmacol ExpTher 1985; 234: 761–5

    CAS  Google Scholar 

  97. Coughtrie MW, Ask B, Rane A, et al. The enantioselective glucuronidation of morphine in rats and humans. Evidence for the involvement of more than one UDP-glucuronosyltransferase isoenzyme. Biochem Pharmacol 1989; 38(19): 3273–80

    CAS  PubMed  Google Scholar 

  98. Wahlström A, Pacifici GM, Lindstrom B, et al. Human liver morphine UDP-glucuronyl transferase enantioselectivity and inhibition by Opioid congeners and oxazepam. Br J Pharmacol 1988; 94: 864–70

    PubMed  PubMed Central  Google Scholar 

  99. Iribarne C, Dreano Y, Bardou LG, et al. Interaction of methadone with substrates of human hepatic cytochrome P450 3A4. Toxicology 1997; 117(1): 13–23

    CAS  PubMed  Google Scholar 

  100. Foster DJ, Somogyi AA, Bochner F. Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol 1999; 47(4): 403–12

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4. An explanation of the variable elimination clearance. Anesthesiology 1992; 77(3): 467–74

    CAS  PubMed  Google Scholar 

  102. Labroo RB, Thummel KE, Kunze KL, et al. Catalytic role of cytochrome P4503A4 in multiple pathways of alfentanil metabolism. Drug Metab Dispos 1995; 23(4): 490–6

    CAS  PubMed  Google Scholar 

  103. Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996; 82(1): 167–72

    CAS  PubMed  Google Scholar 

  104. Kharasch ED, Russell M, Mautz D, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 1997; 87(1): 36–50

    CAS  PubMed  Google Scholar 

  105. Labroo RB, Paine MF, Thummel KE, et al. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 1997; 25(9): 1072–80

    CAS  PubMed  Google Scholar 

  106. Iribarne C, Picart D, Dreano Y, et al. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes. Life Sci 1997; 60(22): 1953–64

    CAS  PubMed  Google Scholar 

  107. Kobayashi K, Yamamoto T, Chiba K, et al. Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos 1998; 26(8): 818–21

    CAS  PubMed  Google Scholar 

  108. Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999; 36(4): 289–304

    CAS  PubMed  Google Scholar 

  109. Buitrago MI, Friedland G. Tuberculosis and HIV infection. Curr Infect Dis Rep 1999; 1(1): 105–9

    CAS  PubMed  Google Scholar 

  110. Jann MW, Cohen LJ. The influence of ethnicity and antidepressant pharmacogenetics in the treatment of depression. Drug Metabol Drug Interact 2000; 16(1): 39–67

    CAS  PubMed  Google Scholar 

  111. Misra LK, Erpenbach JE, Hamlyn H, et al. Quetiapine: a new atypical antipsychotic. S D J Med 1998; 51(6): 189–93

    CAS  PubMed  Google Scholar 

  112. Owen JR, Nemeroff CB. New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety 1998; 7 Suppl. 1: 24–32

    PubMed  Google Scholar 

  113. Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000; 75(9): 933–42

    CAS  PubMed  Google Scholar 

  114. Tanaka E, Ishikawa A, Misawa S. Changes in the metabolism of three model substrates catalysed by different P450 isozymes when administered as a cocktail to the carbon tetrachloride-intoxicated rat. Xenobiotica 1995; 25(10): 1111–8

    CAS  PubMed  Google Scholar 

  115. Giaccone M, Bartoli A, Gatti G, et al. Effect of enzyme inducing anticonvulsants on ethosuximide pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1996; 41(6): 575–9

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Furukori H, Otani K, Yasui N, et al. Effect of carbamazepine on the single oral dose pharmacokinetics of alprazolam. Neuropsychopharmacology 1998; 18(5): 364–9

    CAS  PubMed  Google Scholar 

  117. Bertilsson L, Tybring G, Widen J, et al. Carbamazepine treatment induces the CYP3A4 catalysed sulphoxidation of omeprazole, but has no or less effect on hydroxylation via CYP2C19. BrJ Clin Pharmacol 1997; 44(2): 186–9

    CAS  Google Scholar 

  118. Heelon MW, Meade LB. Methadone withdrawal when starting an antiretroviral regimen including nevirapine. Pharmacotherapy 1999; 19(4): 471–2

    CAS  PubMed  Google Scholar 

  119. Geletko SM, Erickson AD. Decreased methadone effect after ritonavir initiation. Pharmacotherapy 2000; 20(1): 93–4

    CAS  PubMed  Google Scholar 

  120. Holmes VF. Rifampin-induced methadone withdrawal in AIDS. J Clin Psychopharmacol 1990; 10(6): 443–4

    CAS  PubMed  Google Scholar 

  121. Bending MR, Skacel PO. Rifampicin and methadone withdrawal [letter]. Lancet 1977; 1(8023): 1211

    CAS  PubMed  Google Scholar 

  122. Raistrick D, Hay A, Wolff K. Methadone maintenance and tuberculosis treatment. BMJ 1996; 313(7062): 925–6

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Moody DE, Alburges ME, Parker RJ, et al. The involvement of cytochrome P450 3A4 in the N-demethylation of L-alphaacetylmethadol (LAAM), norLAAM, and methadone. Drug Metab Dispos 1997; 25(12): 1347–53

    CAS  PubMed  Google Scholar 

  124. Iribarne C, Berthou F, Carlhant D, et al. Inhibition of methadone and buprenorphine N-dealkylations by three HIV-1 protease inhibitors. Drug Metab Dispos 1998; 26(3): 257–60

    CAS  PubMed  Google Scholar 

  125. Fung HB, Kirschenbaum HL, Hameed R. Amprenavir: a new human immunodeficiency virus type 1 protease inhibitor. Clin Ther 2000; 22(5): 549–72

    CAS  PubMed  Google Scholar 

  126. Palkama VJ, Isohanni MH, Neuvonen PJ, et al. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998; 87(1): 190–4

    CAS  PubMed  Google Scholar 

  127. Palkama VJ, Neuvonen PJ, Olkkola KT. The CYP 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.V. fentanyl. Br J Anaesth 1998; 81(4): 598–600

    CAS  PubMed  Google Scholar 

  128. Feierman DE. The effect of paracetamol (acetaminophen) on fentanyl metabolism in vitro. Acta Anaesthesiol Scand 2000; 44(5): 560–3

    CAS  PubMed  Google Scholar 

  129. Oda Y, Mizutani K, Hase I, et al. Fentanyl inhibits metabolism of midazolam: competitive inhibition of CYP3A4 in vitro. Br J Anaesth 1999; 82(6): 900–3

    CAS  PubMed  Google Scholar 

  130. Iribarne C, Picart D, Dreano Y, et al. In vitro interactions between fluoxetine or fluvoxamine and methadone or buprenorphine. Fundam Clin Pharmacol 1998; 12(2): 194–9

    CAS  PubMed  Google Scholar 

  131. Wilder-Smith CH, Hufschmid E, Thormann W. The visceral and somatic antinociceptive effects of dihydrocodeine and its metabolite, dihydromorphine. A cross-over study with extensive and quinidine-induced poor metabolizers. Br J Clin Pharmacol 1998; 45(6): 575–81

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 1998; 64(6): 603–11

    CAS  PubMed  Google Scholar 

  133. Botsch S, Heinkele G, Meese CO, et al. Rapid determination of CYP2D6 phenotype during Propafenone therapy by analysing urinary excretion of Propafenone glucuronides. Eur J Clin Pharmacol 1994; 46(2): 133–5

    CAS  PubMed  Google Scholar 

  134. Ebner T, Eichelbaum M. The metabolism of aprindine in relation to the sparteine/debrisoquine polymorphism. Br J Clin Pharmacol 1993; 35(4): 426–30

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ereshefsky L, Riesenman C, Lam YW. Antidepressant drug interactions and the cytochrome P450 system. The role of cytochrome P450 2D6. Clin Pharmacokinet 1995; 29 Suppl. 1: 10–8

    CAS  PubMed  Google Scholar 

  136. Catterson ML, Preskorn SH. Pharmacokinetics of selective serotonin reuptake inhibitors: clinical relevance. Pharmacol Toxicol 1996; 78(4): 203–8

    CAS  PubMed  Google Scholar 

  137. von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotoninreuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268(3): 1278–83

    Google Scholar 

  138. Stevens JC, Wrighton SA. Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochromes P450. J Pharmacol Exp Ther 1993; 266(2): 964–71

    CAS  PubMed  Google Scholar 

  139. von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450-2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998; 87(10): 1184–9

    Google Scholar 

  140. Stormer E, von Moltke LL, Shader RI, et al. Metabolism of the antidepressant mirtazapine in vitro: contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab Dispos 2000; 28(10): 1168–75

    CAS  PubMed  Google Scholar 

  141. Owen JR, Nemeroff CB. New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety 1998; 7 Suppl. 1: 24–32

    PubMed  Google Scholar 

  142. Pollock BG, Sweet RA, Kirshner M, et al. Bupropion plasma levels and CYP2D6 phenotype. Ther Drug Monit 1996; 18(5): 581–5

    CAS  PubMed  Google Scholar 

  143. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153(3): 311–20

    CAS  PubMed  Google Scholar 

  144. Shiraga T, Kaneko H, Iwasaki K, et al. Identification of cytochrome P450 enzymes involved in the metabolism of zotepine, an antipsychotic drug, in human liver microsomes. Xenobiotica 1999; 29(3): 217–29

    CAS  PubMed  Google Scholar 

  145. Fischer V, Vogels B, Maurer G, et al. The antipsychotic Clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6. J Pharmacol Exp Ther 1992; 260(3): 1355–60

    CAS  PubMed  Google Scholar 

  146. Solai LK, Mulsant BH, Pollock BG, et al. Effect of sertraline on plasma nortriptyline levels in depressed elderly. J Clin Psychiatry 1997; 58(10): 440–3

    CAS  PubMed  Google Scholar 

  147. Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997; 57(16): 3402–6

    CAS  PubMed  Google Scholar 

  148. Crewe HK, Ellis SW, Lennard MS, et al. Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 1997; 53(2): 171–8

    CAS  PubMed  Google Scholar 

  149. Hamelin BA, Bouayad A, Drolet B, et al. In vitro characterization of cytochrome P450 2D6 inhibition by classic histamine H1 receptor antagonists. Drug Metab Dispos 1998; 26(6): 536–9

    CAS  PubMed  Google Scholar 

  150. Masimirembwa CM, Hasler JA, Johansson I. Inhibitory effects of antiparasitic drugs on cytochrome P450 2D6. Eur J Clin Pharmacol 1995; 48(1): 35–8

    CAS  PubMed  Google Scholar 

  151. Ko JW, Desta Z, Soukhova NV, et al. In vitro inhibition of the cytochrome P450 (CYP450) system by the antiplatelet drug ticlopidine: potent effect on CYP2C19 and CYP2D6. Br J Clin Pharmacol 2000; 49(4): 343–51

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu D, Otton SV, Sproule BA, et al. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br J Clin Pharmacol 1993; 35(1): 30–4

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sanz EJ, Bertilsson L. d-Propoxyphene is a potent inhibitor of debrisoquine, but not S-mephenytoin 4-hydroxylation in vivo. Ther Drug Monit 1990; 12(3): 297–9

    CAS  PubMed  Google Scholar 

  154. Kerry NL, Somogyi AA, Bochner F, et al. The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: in vitro studies using human liver microsomes. Br J Clin Pharmacol 1994; 38(3): 243–8

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mikus G, Bochner F, Eichelbaum M, et al. Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J Pharmacol Exp Ther 1994; 268(2): 546–51

    CAS  PubMed  Google Scholar 

  156. Persson K, Sjostrom S, Sigurdardottir I, et al. Patient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan. Br J Clin Pharmacol 1995; 39(2): 182–6

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Desmeules J, Gascon MP, Dayer P, et al. Impact of environmental and genetic factors on codeine analgesia. Eur J Clin Pharmacol 1991; 41: 23–6

    CAS  PubMed  Google Scholar 

  158. Kapusta DR. Opioid mechanisms controlling renal function. Clin Exp Pharmacol Physiol 1995; 22(12): 891–902

    CAS  PubMed  Google Scholar 

  159. Kapusta DR, Dzialowski EM. Central mu Opioids mediate differential control of urine flow rate and urinary sodium excretion in conscious rats. Life Sci 1995; 56(14): L243–8

    Google Scholar 

  160. Kapusta DR, Obih JC, Dibona GF. Central mu Opioid receptormediated changes in renal function in conscious rats. J Pharmacol Exp Ther 1993; 265(1): 134–43

    CAS  PubMed  Google Scholar 

  161. Gutkowska J, Schiller PW. Renal effects of TAPP, a highly selective mu-opioid agonist. Br J Pharmacol 1996; 119(2): 239–44

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Brooks DP, Valente M, Petrone G, et al. Comparison of the water diuretic activity of kappa receptor agonists and a Vasopressin receptor antagonist in dogs. J Pharmacol Exp Ther 1997; 280(3): 1176–83

    CAS  PubMed  Google Scholar 

  163. Kapusta DR, Obih JC. Central kappa Opioids blunt the renal excretory responses to volume expansion by a renal nerve-dependent mechanism. J Pharmacol Exp Ther 1995; 273(1): 199–205

    CAS  PubMed  Google Scholar 

  164. Sezen SF, Kenigs VA, Kapusta DR. Renal excretory responses produced by the delta Opioid agonist, BW373U86, in conscious rats. J Pharmacol Exp Ther 1998; 287(1): 238–45

    CAS  PubMed  Google Scholar 

  165. Flores O, Camera LA, Hergueta A, et al. Role of atrial natriuretic factor, hemodynamic changes and renal nerves in the renal effects of intraperitoneal morphine in conscious rats. Kidney Blood Press Res 1997; 20(1): 18–24

    CAS  PubMed  Google Scholar 

  166. Chien CC, Pasternak GW. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma 1 system. Eur J Pharmacol 1993; 250(1): R7–8

    CAS  PubMed  Google Scholar 

  167. Aitken HA, Clark EC, McArdle CS, et al. Evaluation of two formulations of dihydrocodeine using patient-controlled analgesia. Anaesthesia 1990; 45(7): 535–7

    CAS  PubMed  Google Scholar 

  168. Ashburn MA, Stephen RL, Ackerman E, et al. Iontophoretic delivery of morphine for postoperative analgesia. J Pain Symptom Manage 1992; 7(1): 27–33

    CAS  PubMed  Google Scholar 

  169. Broome IJ, Wright BM, Bower S, et al. Postoperative analgesia with transdermal fentanyl following lower abdominal surgery. Anaesthesia 1995; 50(4): 300–3

    CAS  PubMed  Google Scholar 

  170. Sandier AN, Baxter AD, Katz J, et al. A double-blind, placebocontrolled trial of transdermal fentanyl after abdominal hysterectomy. Analgesic, respiratory, and pharmacokinetic effects. Anesthesiology 1994; 81(5): 1169–80

    Google Scholar 

  171. France JC, Jorgenson SS, Lowe TG, et al. The use of intrathecal morphine for analgesia after posterolateral lumbar fusion: a prospective, double-blind, randomized study. Spine 1997; 22(19): 2272–7

    CAS  PubMed  Google Scholar 

  172. Michaloudis D, Petrou A, Bakos P, et al. Continuous spinal anaesthesia/analgesia for the perioperative management of high-risk patients. Eur J Anaesthesiol 2000; 17(4): 239–47

    CAS  PubMed  Google Scholar 

  173. Joshi GP, McCarroll SM, McSwiney M, et al. Effects of intraarticular morphine on analgesic requirements after anterior cruciate ligament repair. Reg Anesth 1993; 18(4): 254–7

    CAS  PubMed  Google Scholar 

  174. Muittari PA, Nelimarkka O, Seppala T, et al. Comparison of the analgesic effects of intrabursal oxycodone and bupivacaine after acromioplasty. J Clin Anesth 1999; 11(1): 11–6

    CAS  PubMed  Google Scholar 

  175. Ngan Kee WD, Khaw KS, Wong EL. Randomised double-blind comparison of morphine vs. a morphine-alfentanil combination for patient-controlled analgesia. Anaesthesia 1999; 54(7): 629–33

    CAS  PubMed  Google Scholar 

  176. Sinatra RS, Sevarino FB, Chung JH, et al. Comparison of epidurally administered sufentanil, morphine, and sufentanilmorphine combination for postoperative analgesia. Anesth Analg 1991; 72(4): 522–7

    CAS  PubMed  Google Scholar 

  177. Sudarshan G, Browne BL, Matthews JN, et al. Intrathecal fentanyl for post-thoracotomy pain. Br J Anaesth 1995; 75(1): 19–22

    CAS  PubMed  Google Scholar 

  178. Ashburn MA, Lind GH, Gillie MH, et al. Oral transmucosal fentanyl citrate (OTFC) for the treatment of postoperative pain. Anesth Analg 1993; 76(2): 377–81

    CAS  PubMed  Google Scholar 

  179. Sevarino FB, Naulty JS, Sinatra R, et al. Transdermal fentanyl for postoperative pain management in patients recovering from abdominal gynecologic surgery. Anesthesiology 1992; 77(3): 463–6

    CAS  PubMed  Google Scholar 

  180. Sevarino FB, Paige D, Sinatra RS, et al. Postoperative analgesia with parenteral Opioids: does continuous delivery utilizing a transdermal Opioid preparation affect analgesic efficacy or patient safety? J Clin Anesth 1997; 9(3): 173–8

    CAS  PubMed  Google Scholar 

  181. Henn P, Fischer M, Steuer K, et al. Effectiveness of morphine by periarticular injections after shoulder arthroscopy. Anaesthesist 2000; 49(8): 721–4

    CAS  PubMed  Google Scholar 

  182. Manara AR, Bodenham AR, Park GR. Analgesic efficacy of perioperative buccal morphine. Br J Anaesth 1990; 64(5): 551–5

    CAS  PubMed  Google Scholar 

  183. van den Nieuwenhuyzen MC, Stienstra R, Burm AG, et al. Al-fentanil as an adjuvant to epidural bupivacaine in the management of postoperative pain after laparotomies: lack of evidence of spinal action. Anesth Analg 1998; 86(3): 574–8

    PubMed  Google Scholar 

  184. Guignard B, Bossard AE, Coste C, et al. Acute Opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 2000; 93(2): 409–17

    CAS  PubMed  Google Scholar 

  185. Shen KF, Crain SM. Ultra-low doses of naltrexone or etorphine increase morphine’s antinociceptive potency and attenuate tolerance/dependence in mice. Brain Res 1997; 757(2): 176–90

    CAS  PubMed  Google Scholar 

  186. Gahwiler BH. Excitatory action of Opioid peptides and opiates on cultured hippocampal pyramidal cells. Brain Res 1980; 194(1): 193–203

    CAS  PubMed  Google Scholar 

  187. Crain SM, Shen KF. Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc Natl Acad Sci U S A 1995; 92(23): 10540–4

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Gan TJ, Ginsberg B, Glass PS, et al. Opioid-sparing effects of a low-dose infusion of naloxone in patient-administered morphine sulfate. Anesthesiology 1997; 87(5): 1075–81

    CAS  PubMed  Google Scholar 

  189. Lehmann KA, Reichling U, Wirtz R. Influence of naloxone on the postoperative analgesic and respiratory effects of buprenorphine. Eur J Clin Pharmacol 1988; 34(4): 343–52

    CAS  PubMed  Google Scholar 

  190. Joshi GP, Duffy L, Chehade J, et al. Effects of prophylactic nalmefene on the incidence of morphine-related side effects in patients receiving intravenous patient-controlled analgesia. Anesthesiology 1999; 90(4): 1007–11

    CAS  PubMed  Google Scholar 

  191. Fletcher D, Negre I, Barbin C, et al. Postoperative analgesia with i.V. propacetamol and ketoprofen combination after disc surgery. Can J Anaesth 1997; 44(5 Pt 1): 479–85

    CAS  PubMed  Google Scholar 

  192. Kostamovaara PA, Laitinen JO, Nuutinen LS, et al. Intravenous ketoprofen for pain relief after total hip or knee replacement. Acta Anaesthesiol Scand 1996; 40(6): 697–703

    CAS  PubMed  Google Scholar 

  193. Grass JA, Sakima NT, Valley M, et al. Assessment of ketorolac as an adjuvant to fentanyl patient-controlled epidural analgesia after radical retropubic prostatectomy. Anesthesiology 1993; 78(4): 642–8

    CAS  PubMed  Google Scholar 

  194. Etches RC, Warriner CB, Badner N, et al. Continuous intravenous administration of ketorolac reduces pain and morphine consumption after total hip or knee arthroplasty. Anesth Analg 1995; 81(6): 1175–80

    CAS  PubMed  Google Scholar 

  195. Hernandez-Palazon J, Tortosa-Serrano JA, Sanchez-Ortega JL, et al. Postoperative analgesia with epidural methadone in patients operated for hernia of the lumbar disc. Rev Esp Anestesiol Reanim 1997; 44(5): 182–5

    CAS  PubMed  Google Scholar 

  196. Liaw WJ, Day YJ, Wang JJ, et al. Intravenous tenoxicam reduces dose and side effects of PCA morphine in patients after thoracic endoscopic sympathectomy. Acta Anaesthesiol Sin 1995; 33(2): 73–7

    CAS  PubMed  Google Scholar 

  197. Fredman B, Olsfanger D, Jedeikin R. A comparative study of ketorolac and diclofenac on post-laparoscopic cholecystectomy pain. Eur J Anaesthesiol 1995; 12(5): 501–4

    CAS  PubMed  Google Scholar 

  198. Cobby TF, Crighton IM, Kyriakides K, et al. Rectal paracetamol has a significant morphine-sparing effect after hysterectomy. Br J Anaesth 1999; 83(2): 253–6

    CAS  PubMed  Google Scholar 

  199. Lovett PE, Stanton SL, Hennessy D, et al. Pain relief after major gynaecological surgery. Br J Nurs 1994; 3(4): 159–62

    CAS  PubMed  Google Scholar 

  200. Olofsson CI, Legeby MH, Nygards EB, et al. Diclofenac in the treatment of pain after caesarean delivery. An opioid-saving strategy. Eur J Obstet Gynecol Reprod Biol 2000; 88(2): 143–6

    CAS  PubMed  Google Scholar 

  201. Perttunen K, Kalso E, Heinonen J, et al. IV diclofenac in post-thoracotomy pain. Br J Anaesth 1992; 68(5): 474–80

    CAS  PubMed  Google Scholar 

  202. Bjorkman R, Ullman A, Hedner J. Morphine-sparing effect of diclofenac in cancer pain. Eur J Clin Pharmacol 1993; 44(1): 1–5

    CAS  PubMed  Google Scholar 

  203. Moffat AC, Kenny GN, Prentice JW. Postoperative nefopam and diclofenac. Evaluation of their morphine-sparing effect after upper abdominal surgery. Anaesthesia 1990; 45(4): 302–5

    CAS  PubMed  Google Scholar 

  204. Colquhoun AD, Fell D. Failure of rectal diclofenac to augment Opioid analgesia after cholecystectomy. Anaesthesia 1989; 44(1): 57–60

    CAS  PubMed  Google Scholar 

  205. Beck DH, Schenk MR, Hagemann K, et al. The pharmacokinetics and analgesic efficacy of larger dose rectal acetaminophen (40 mg/kg) in adults: a double-blinded, randomized study. Anesth Analg 2000; 90(2): 431–6

    CAS  PubMed  Google Scholar 

  206. Aubrun F, Langeron O, Heitz D, et al. Randomised, placebocontrolled study of the postoperative analgesic effects of ketoprofen after spinal fusion surgery. Acta Anaesthesiol Scand 2000; 44(8): 934–9

    CAS  PubMed  Google Scholar 

  207. Rao AS, Cardosa M, Inbasegaran K. Morphine-sparing effect of ketoprofen after abdominal surgery. Anaesth Intensive Care 2000; 28(1): 22–6

    CAS  PubMed  Google Scholar 

  208. Blackburn A, Stevens JD, Wheatley RG, et al. Balanced analgesia with intravenous ketorolac and patient-controlled morphine following lower abdominal surgery. J Clin Anesth 1995; 7(2): 103–8

    CAS  PubMed  Google Scholar 

  209. Ready LB, Brown CR, Stahlgren LH, et al. Evaluation of intravenous ketorolac administered by bolus or infusion for treatment of postoperative pain. A double-blind, placebo-controlled, multicenter study. Anesthesiology 1994; 80(6): 1277–86

    CAS  PubMed  Google Scholar 

  210. Sevarino FB, Sinatra RS, Paige D, et al. Intravenous ketorolac as an adjunct to patient-controlled analgesia (PCA) for management of postgynecologic surgical pain. J Clin Anesth 1994; 6(1): 23–7

    CAS  PubMed  Google Scholar 

  211. Vetter TR, Heiner EJ. Intravenous ketorolac as an adjuvant to pediatric patient-controlled analgesia with morphine. J Clin Anesth 1994; 6(2): 110–3

    CAS  PubMed  Google Scholar 

  212. Fogarty DJ, O’Hanlon JJ, Milligan KR. Intramuscular ketorolac following total hip replacement with spinal anaesthesia and intrathecal morphine. Acta Anaesthesiol Scand 1995; 39(2): 191–4

    CAS  PubMed  Google Scholar 

  213. Sevarino FB, Sinatra RS, Paige D, et al. The efficacy of intramuscular ketorolac in combination with intravenous PCA morphine for postoperative pain relief. J Clin Anesth 1992; 4(4): 285–8

    CAS  PubMed  Google Scholar 

  214. Burns JW, Aitken HA, Bullingham RE, et al. Double-blind comparison of the morphine sparing effect of continuous and intermittent i.m. administration of ketorolac. Br J Anaesth 1991; 67(3): 235–8

    CAS  PubMed  Google Scholar 

  215. Cataldo PA, Senagore AJ, Kilbride MJ. Ketorolac and patient controlled analgesia in the treatment of postoperative pain. Surg Gynecol Obstet 1993; 176(5): 435–8

    CAS  PubMed  Google Scholar 

  216. Lebedeva RN, Maiachkin RB, Nikoda VV, et al. Methods of the use of ketorolac tromethamine in patients during the early postoperative period [in German]. Anesteziol Reanimatol 1997; (5): 98–102

    Google Scholar 

  217. Reuben SS, Connelly NR, Lurie S, et al. Dose-response of ketorolac as an adjunct to patient-controlled analgesia morphine in patients after spinal fusion surgery. Anesth Analg 1998; 87(1): 98–102

    CAS  PubMed  Google Scholar 

  218. Fredman B, Olsfanger D, Flor P, et al. Ketorolac does not decrease postoperative pain in elderly men after transvesical prostatectomy. Can J Anaesth 1996; 43(5 Pt 1): 438–41

    CAS  PubMed  Google Scholar 

  219. O’Hara DA, Fanciullo G, Hubbard L, et al. Evaluation of the safety and efficacy of ketorolac versus morphine by patientcontrolled analgesia for postoperative pain. Pharmacotherapy 1997; 17(5): 891–9

    PubMed  Google Scholar 

  220. Sutters KA, Shaw BA, Gerardi JA, et al. Comparison of morphine patient-controlled analgesia with and without ketorolac for postoperative analgesia in pediatric orthopedic surgery. Am J Orthop 1999; 28(6): 351–8

    CAS  PubMed  Google Scholar 

  221. Picard P, Bazin JE, Conio N, et al. Ketorolac potentiates morphine in postoperative patient-controlled analgesia. Pain 1997; 73(3): 401–6

    CAS  PubMed  Google Scholar 

  222. Bertini L, Tagariello V, Molino FM, et al. Patient-controlled postoperative analgesia in orthopedic surgery: epidural PCA versus intravenous PCA. Minerva Anestesiol 1995; 61(7–8): 319–28

    CAS  PubMed  Google Scholar 

  223. Dawson KH, Egbert MA, Myall RW. Pain following iliac crest bone grafting of alveolar clefts. J Craniomaxillofac Surg 1996; 24(3): 151–4

    CAS  PubMed  Google Scholar 

  224. Schug SA, Sidebotham DA, McGuinnety M, et al. Acetaminophen as an adjunct to morphine by patient-controlled analgesia in the management of acute postoperative pain. Anesth Analg 1998; 87(2): 368–72

    CAS  PubMed  Google Scholar 

  225. Delbos A, Boccard E. The morphine-sparing effect of propacetamol in orthopedic postoperative pain. J Pain Symptom Manage 1995; 10(4): 279–86

    CAS  PubMed  Google Scholar 

  226. Peduto VA, Ballabio M, Stefanini S. Efficacy of propacetamol in the treatment of postoperative pain. Morphine-sparing effect in orthopedic surgery. Italian Collaborative Group on Propacetamol. Acta Anaesthesiol Scand 1998; 42(3): 293–8

    CAS  PubMed  Google Scholar 

  227. Serpell MG, Thomson ME Comparison of piroxicam with placebo in the management of pain after total hip replacement. Br J Anaesth 1989; 63(3): 354–6

    CAS  PubMed  Google Scholar 

  228. Pang W, Huang S, Tung CC, et al. Patient-controlled analgesia with tramadol versus tramadol plus lysine acetyl salicylate. Anesth Analg 2000; 91(5): 1226–9

    CAS  PubMed  Google Scholar 

  229. Plummer JL, Owen H, Ilsley AH, et al. Sustained-release ibuprofen as an adjunct to morphine patient-controlled analgesia [see comments]. Anesth Analg 1996; 83(1): 92–6

    CAS  PubMed  Google Scholar 

  230. Sims C, Johnson CM, Bergesio R, et al. Rectal indomethacin for analgesia after appendicectomy in children. Anaesth Intensive Care 1994; 22(3): 272–5

    CAS  PubMed  Google Scholar 

  231. Tigerstedt I, Tammisto T, Neuvonen PJ. The efficacy of intravenous indomethacin in prevention of postoperative pain. Acta Anaesthesiol Scand 1991; 35(6): 535–40

    CAS  PubMed  Google Scholar 

  232. Segstro R, Morley-Forster PK, Lu G. Indomethacin as a postoperative analgesic for total hip arthroplasty. Can J Anaesth 1991; 38(5): 578–81

    CAS  PubMed  Google Scholar 

  233. Rapanos T, Murphy P, Szalai JP, et al. Rectal indomethacin reduces postoperative pain and morphine use after cardiac surgery. Can J Anaesth 1999; 46(8): 725–30

    CAS  PubMed  Google Scholar 

  234. Turner GA, Gorringe J. Indomethacin as adjunct analgesia following open cholecystectomy. Anaesth Intensive Care 1994; 22(1): 25–9

    CAS  PubMed  Google Scholar 

  235. Laitinen J, Nuutinen L. Intravenous diclofenac coupled with PCA fentanyl for pain relief after total hip replacement. Anesthesiology 1992; 76(2): 194–8

    CAS  PubMed  Google Scholar 

  236. Gordon RL. Prolonged central intravenous ketorolac continuous infusion in a cancer patient with intractable bone pain. Ann Pharmacother 1998; 32(2): 193–6

    CAS  PubMed  Google Scholar 

  237. Mercadante S, Sapio M, Caligara M, et al. Opioid-sparing effect of diclofenac in cancer pain. J Pain Symptom Manage 1997; 14(1): 15–20

    CAS  PubMed  Google Scholar 

  238. Lehmann KA, Abu-Shibika M, Horrichs-Haermeyer G. Postoperative pain therapy with 1-methadone and metamizole. A randomized study within the scope of intravenous on-demand analgesia [in German]. Anasth Intensivther Notfallmed 1990; 25(2): 152–9

    CAS  PubMed  Google Scholar 

  239. Niemi L, Tuominen M, Pitkanen M, et al. Comparison of parenteral diclofenac and ketoprofen for postoperative pain relief after maxillofacial surgery. Acta Anaesthesiol Scand 1995; 39(1): 96–9

    CAS  PubMed  Google Scholar 

  240. Steffen P, Druck A, Krinn E, et al. Differential indications of non-opioid drugs for postoperative analgesia II. Quantification of the analgesic effect of a combination of metamizol plus diclofenac via patient-controlled analgesia [in German]. Anasthesiol Intensivmed Notfallmed Schmerzther 1996; 31(4): 216–21

    CAS  PubMed  Google Scholar 

  241. Steffen P, Schuhmacher I, Weichel T, et al. Differential administration of non-opioids in postoperative analgesia, I. Quantification of the analgesic effect of metamizole using patient-controlled analgesia [in German]. Anasthesiol Intensivmed Notfallmed Schmerzther 1996; 31(3): 143–7

    CAS  PubMed  Google Scholar 

  242. Steffen P, Seeling W, Kunz R, et al. Postoperative analgesia after endoscopic abdominal operations. A randomized double-blind study of perioperative effectiveness of metamizole (see comments) [in German]. Chirurg 1997; 68(8): 806–10

    CAS  PubMed  Google Scholar 

  243. Pang W, Mok MS, Ku MC, et al. Patient-controlled analgesia with morphine plus lysine acetyl salicylate. Anesth Analg 1999; 89(4): 995–8

    CAS  PubMed  Google Scholar 

  244. Nitschke LF, Schlosser CT, Berg RL, et al. Does patient-controlled analgesia achieve better control of pain and fewer adverse effects than intramuscular analgesia?. A prospective randomized trial. Arch Surg 1996; 131(4): 417–23

    CAS  PubMed  Google Scholar 

  245. Reuben SS, Connelly NR, Steinberg R. Ketorolac as an adjunct to patient-controlled morphine in postoperative spine surgery patients. Reg Anesth 1997; 22(4): 343–6

    CAS  PubMed  Google Scholar 

  246. Silvasti M, Pitkanen M. Continuous epidural analgesia with bupivacaine-fentanyl versus patient-controlled analgesia with i.V. morphine for postoperative pain relief after knee ligament surgery. Acta Anaesthesiol Scand 2000; 44(1): 37–42

    CAS  PubMed  Google Scholar 

  247. Tighe KE, Webb AM, Hobbs GJ. Persistently high plasma morphine-6-glucuronide levels despite decreased hourly patientcontrolled analgesia morphine use after single-dose diclofenac: potential for opioid-related toxicity. Anesth Analg 1999; 88(5): 1137–42

    CAS  PubMed  Google Scholar 

  248. Angst MS, Bührer M, Lötsch J. Insidious intoxication after morphine treatment in renal failure: delayed onset of morphine-6-glucuronide action. Anesthesiology 2000; 92(5): 1473–6

    CAS  PubMed  Google Scholar 

  249. Yeh HM, Chen LK, Lin CJ, et al. Prophylactic intravenous ondansetron reduces the incidence of intrathecal morphineinduced pruritus in patients undergoing cesarean delivery. Anesth Analg 2000; 91(1): 172–5

    CAS  PubMed  Google Scholar 

  250. Onghena P, Van Houdenhove B. Antidepressant-induced analgesia in chronic non-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 1992; 49(2): 205–19

    CAS  PubMed  Google Scholar 

  251. Anzai Y, Nishikawa T. Thoracic epidural Clonidine and morphine for postoperative pain relief. Can J Anaesth 1995; 42(4): 292–7

    CAS  PubMed  Google Scholar 

  252. Benhamou D, Narchi P, Hamza J, et al. Addition of oral Clonidine to postoperative patient-controlled analgesia with i.V. morphine. Br J Anaesth 1994; 72(5): 537–40

    CAS  PubMed  Google Scholar 

  253. De Kock MF, Pichon G, Scholtes JL. Intraoperative Clonidine enhances postoperative morphine patient-controlled analgesia. Can J Anaesth 1992; 39(6): 537–44

    PubMed  Google Scholar 

  254. Segal IS, Jarvis DJ, Duncan SR, et al. Clinical efficacy of oraltransdermal Clonidine combinations during the perioperative period. Anesthesiology 1991; 74(2): 220–5

    CAS  PubMed  Google Scholar 

  255. Paech MJ, Pavy TJ, Orlikowski CE, et al. Patient-controlled epidural analgesia in labor: the addition of Clonidine to bupivacaine-fentanyl. Reg Anesth Pain Med 2000; 25(1): 34–40

    CAS  PubMed  Google Scholar 

  256. Paech MJ, Pavy TJ, Orlikowski CE, et al. Postoperative epidural infusion: a randomized, double-blind, dose-finding trial of Clonidine in combination with bupivacaine and fentanyl. Anesth Analg 1997; 84(6): 1323–8

    CAS  PubMed  Google Scholar 

  257. Viggiano M, Badetti C, Roux F, et al. Controlled analgesia in a burn patient: fentanyl sparing effect of Clonidine. Ann Fr Anesth Reanim 1998; 17(1): 19–26

    CAS  PubMed  Google Scholar 

  258. Fogarty DJ, Carabine UA, Milligan KR. Comparison of the analgesic effects of intrathecal Clonidine and intrathecal morphine after spinal anaesthesia in patients undergoing total hip replacement. Br J Anaesth 1993; 71(5): 661–4

    CAS  PubMed  Google Scholar 

  259. Park J, Forrest J, Kolesar R, et al. Oral Clonidine reduces postoperative PCA morphine requirements. Can J Anaesth 1996; 43(9): 900–6

    CAS  PubMed  Google Scholar 

  260. De Kock M, Lavandhomme P, Scholtes JL. Intraoperative and postoperative analgesia using intravenous Opioid, Clonidine and lignocaine. Anaesth Intensive Care 1994; 22(1): 15–21

    PubMed  Google Scholar 

  261. Erjavec MK, Coda BA, Nguyen Q, et al. Morphine-fluoxetine interactions in healthy volunteers: analgesia and side effects. J Clin Pharmacol 2000; 40(11): 1286–95

    CAS  PubMed  Google Scholar 

  262. Schreiber S, Backer MM, Herman I, et al. The antinociceptive effect of trazodone in mice is mediated through both μ-opioid and serotonergic mechanisms. Behav Brain Res 2000; 114(1-2): 51–6

    CAS  PubMed  Google Scholar 

  263. Bardin L, Lavarenne J, Eschalier A. Serotonin receptor subtypes involved in the spinal antinociceptive effect of 5-HT in rats. Pain 2000; 86(1–2): 11–8

    CAS  PubMed  Google Scholar 

  264. Atkinson JH, Slater MA, Wahlgren DR, et al. Effects of noradrenergic and serotonergic antidepressants on chronic low back pain intensity. Pain 1999; 83(2): 137–45

    CAS  PubMed  Google Scholar 

  265. Schreiber S, Backer MM, Pick CG. The antinociceptive effect of venlafaxine in mice is mediated through Opioid and adrenergic mechanisms. Neurosci Lett 1999; 273(2): 85–8

    CAS  PubMed  Google Scholar 

  266. Takagi J, Yonehara N. Serotonin receptor subtypes involved in modulation of electrical acupuncture. Jpn J Pharmacol 1998; 78(4): 511–4

    CAS  PubMed  Google Scholar 

  267. Abbott FV, Etienne P, Franklin KB, et al. Acute tryptophan depletion blocks morphine analgesia in the cold-pressor test in humans. Psychopharmacology Berl 1992; 108: 60–6

    CAS  PubMed  Google Scholar 

  268. Wang YX, Bowersox SS, Pettus M, et al. Antinociceptive properties of fenfluramine, a serotonin reuptake inhibitor, in a rat model of neuropathy. J Pharmacol Exp Ther 1999; 291(3): 1008–16

    CAS  PubMed  Google Scholar 

  269. Arends RH, Hayashi TG, Luger TJ, et al. Cotreatment with racemic fenfluramine inhibits the development of tolerance to morphine analgesia in rats. J Pharmacol Exp Ther 1998; 286(2): 585–92

    CAS  PubMed  Google Scholar 

  270. Schreiber S, Backer MM, Yanai J, et al. The antinociceptive effect of fluvoxamine. Eur Neuropsychopharmacol 1996; 6(4): 281–4

    CAS  PubMed  Google Scholar 

  271. Eisenach JC, Gebhart GF. Intrathecal amitriptyline. Antinociceptive interactions with intravenous morphine and intrathecal Clonidine, neostigmine, and carbamylcholine in rats. Anesthesiology 1995; 83(5): 1036–45

    CAS  PubMed  Google Scholar 

  272. Hood DD, Mallak KA, James RL, et al. Enhancement of analgesia from systemic Opioid in humans by spinal Cholinesterase inhibition. J Pharmacol Exp Ther 1997; 282(1): 86–92

    CAS  PubMed  Google Scholar 

  273. Bouaziz H, Tong C, Yoon Y, et al. Intravenous Opioids stimulate norepinephrine and acetylcholine release in spinal cord dorsal horn. Systematic studies in sheep and an observation in a human. Anesthesiology 1996; 84(1): 143–54

    CAS  PubMed  Google Scholar 

  274. Yang LC, Chen LM, Wang CJ, et al. Postoperative analgesia by intra-articular neostigmine in patients undergoing knee arthroscopy. Anesthesiology 1998; 88(2): 334–9

    CAS  PubMed  Google Scholar 

  275. Cozanitis DA, Friedmann T, Fürst S. Study of the analgesic effects of galanthamine, a Cholinesterase inhibitor. Arch Int Pharmacodyn Ther 1983; 266(2): 229–38

    CAS  PubMed  Google Scholar 

  276. Soyka M, Bondy B, Eisenburg B, et al. NMDA receptor challenge with dextromethorphan — subjective response, neuroendocrinological findings and possible clinical implications. J Neural Transm 2000; 107(6): 701–14

    CAS  PubMed  Google Scholar 

  277. Sang CN. NMDA-receptor antagonists in neuropathic pain: experimental methods to clinical trials. J Pain Symptom Manage 2000; 19 (1 Suppl.): S21–5

    CAS  PubMed  Google Scholar 

  278. Siegan JB, Hama AT, Sagen J. Suppression of neuropathic pain by a naturally-derived peptide with NMDA antagonist activity. Brain Res 1997; 755(2): 331–4

    CAS  PubMed  Google Scholar 

  279. Zeltser R, Seltzer Z, Eisen A, et al. Suppression of neuropathic pain behavior in rats by a non-psychotropic synthetic cannabinoid with NMDA receptor-blocking properties. Pain 1991; 47(1): 95–103

    CAS  PubMed  Google Scholar 

  280. Seltzer Z, Cohn S, Ginzburg R, et al. Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain 1991; 45(1): 69–75

    CAS  PubMed  Google Scholar 

  281. Mercadante S, Arcuri E, Tirelli W, et al. Analgesic effect of intravenous ketamine in cancer patients on morphine therapy. A randomized, controlled, double-blind, crossover, doubledose study. J Pain Symptom Manage 2000; 20(4): 246–52

    CAS  PubMed  Google Scholar 

  282. Rabben T, Skjelbred P, Oye I. Prolonged analgesic effect of ketamine, an N-methyl-D-aspartate receptor inhibitor, in patients with chronic pain. J Pharmacol Exp Ther 1999; 289(2): 1060–6

    CAS  PubMed  Google Scholar 

  283. Adriaenssens G, Vermeyen KM, Hoffmann VL, et al. Postoperative analgesia with i.V. patient-controlled morphine: effect of adding ketamine. Br J Anaesth 1999; 83(3): 393–6

    CAS  PubMed  Google Scholar 

  284. Chia YY, Liu K, Liu YC, et al. Adding ketamine in a multimodal patient-controlled epidural regimen reduces postoperative pain and analgesic consumption. Anesth Analg 1998; 86(6): 1245–9

    CAS  PubMed  Google Scholar 

  285. Javery KB, Ussery TW, Steger HG, et al. Comparison of morphine and morphine with ketamine for postoperative analgesia. Can J Anaesth 1996; 43(3): 212–5

    CAS  PubMed  Google Scholar 

  286. Tan PH, Kuo MC, Kao PF, et al. Patient-controlled epidural analgesia with morphine or morphine plus ketamine for postoperative pain relief. Eur J Anaesthesiol 1999; 16(12): 820–5

    CAS  PubMed  Google Scholar 

  287. Edwards ND, Fletcher A, Cole JR, et al. Combined infusions of morphine and ketamine for postoperative pain in elderly patients. Anaesthesia 1993; 48(2): 124–7

    CAS  PubMed  Google Scholar 

  288. Vollenweider FX, Leenders KL, Oye I, et al. Differential psychopathology and patterns of cerebral glucose utilisation produced by (S)- and (R)-ketamine in healthy volunteers using positron emission tomography (PET). Eur Neuropsychopharmacol 1997; 7(1): 25–38

    CAS  PubMed  Google Scholar 

  289. Nishikawa H, Hashino A, Kume T, et al. Involvement of direct inhibition of NMDAreceptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro. Eur J Pharmacol 2000; 404(1–2): 41–8

    CAS  PubMed  Google Scholar 

  290. Brent PJ, Chahl LA. Enhancement of the opiate withdrawal response by antipsychotic drugs in guinea-pigs is not mediated by sigma binding sites. Eur Neuropsychopharmacol 1993; 3(1): 23–32

    CAS  PubMed  Google Scholar 

  291. Martin D, Lodge D. Phencyclidine receptors and N-methyl-D-aspartate antagonism: electrophysiologic data correlates with known behaviours. Pharmacol Biochem Behav 1988; 31(2): 279–86

    CAS  PubMed  Google Scholar 

  292. Gilron I, Booher SL, Rowan MS, et al. Arandomized, controlled trial of high-dose dextromethorphan in facial neuralgias. Neurology 2000; 55(7): 964–71

    CAS  PubMed  Google Scholar 

  293. Mercadante S, Casuccio A, Genovese G. Ineffectiveness of dextromethorphan in cancer pain. J Pain Symptom Manage 1998; 16(5): 317–22

    CAS  PubMed  Google Scholar 

  294. Carlton SM, Rees H, Gondesen K, et al. Dextrorphan attenuates responses of spinothalamic tract cells in normal and nerve-injured monkeys. Neurosci Lett 1997; 229(3): 169–72

    CAS  PubMed  Google Scholar 

  295. McQuay HJ, Moore RA, Eccleston C, et al. Systematic review of outpatient services for chronic pain control. Health Technol Assess 1997; 1(6): 1–135

    Google Scholar 

  296. Moore A, McQuay H, Gavaghan D. Deriving dichotomous outcome measures from continuous data in randomised controlled trials of analgesics. Pain 1996; 66(2-3): 229–37

    CAS  PubMed  Google Scholar 

  297. Sindrup SH, Jensen TS. Pharmacologic treatment of pain in polyneuropathy. Neurology 2000; 55(7): 915–20

    CAS  PubMed  Google Scholar 

  298. Arms DM, Smith JT, Osteyee J, et al. Postoperative epidural analgesia for pediatric spine surgery. Orthopedics 1998; 21(5): 539–44

    CAS  PubMed  Google Scholar 

  299. Bernard JM, Le Roux D, Vizquel L, et al. Patient-controlled epidural analgesia during labor: the effects of the increase in bolus and lockout interval. Anesth Analg 2000; 90(2): 328–32

    CAS  PubMed  Google Scholar 

  300. Boudreault D, Brasseur L, Samii K, et al. Comparison of continuous epidural bupivacaine infusion plus either continuous epidural infusion or patient-controlled epidural injection of fentanyl for postoperative analgesia. Anesth Analg 1991; 73(2): 132–7

    CAS  PubMed  Google Scholar 

  301. Boylan JF, Katz J, Kavanagh BP, et al. Epidural bupivacainemorphine analgesia versus patient-controlled analgesia following abdominal aortic surgery: analgesic, respiratory, and myocardial effects. Anesthesiology 1998; 89(3): 585–93

    CAS  PubMed  Google Scholar 

  302. Carabine UA, Gilliland H, Johnston JR, et al. Pain relief for thoracotomy. Comparison of morphine requirements using an extrapleural infusion of bupivacaine. Reg Anesth 1995; 20(5): 412–7

    CAS  PubMed  Google Scholar 

  303. Chen TF, Clarke N, Bowman R, et al. Intermuscular bupivacaine infusion for control of pain after renal surgery: a preliminary report. Br J Urol 1994; 74(2): 155–9

    CAS  PubMed  Google Scholar 

  304. Cohen S, Lowenwirt I, Pantuck CB, et al. Bupivacaine 0.01% and/or epinephrine 0.5 microg/ml improve epidural fentanyl analgesia after cesarean section. Anesthesiology 1998; 89(6): 1354–61

    CAS  PubMed  Google Scholar 

  305. Cooper DW, Turner G. Patient-controlled extradural analgesia to compare bupivacaine, fentanyl and bupivacaine with fentanyl in the treatment of postoperative pain. Br J Anaesth 1993; 70(5): 503–7

    CAS  PubMed  Google Scholar 

  306. Ferrante FM, Lu L, Jamison SB, et al. Patient-controlled epidural analgesia: demand dosing. Anesth Analg 1991; 73(5): 547–52

    CAS  PubMed  Google Scholar 

  307. Harrison CA, Morris S, Harvey JS. Effect of ilioinguinal and iliohypogastric nerve block and wound infiltration with 0.5% bupivacaine on postoperative pain after hernia repair. Br J Anaesth 1994; 72(6): 691–3

    CAS  PubMed  Google Scholar 

  308. Jayr C, Beaussier M, Gustafsson U, et al. Continuous epidural infusion of ropivacaine for postoperative analgesia after major abdominal surgery: comparative study with i.v. PCA morphine. Br J Anaesth 1998; 81(6): 887–92

    CAS  PubMed  Google Scholar 

  309. Komatsu H, Matsumoto S, Mitsuhata H, et al. Comparison of patient-controlled epidural analgesia with and without background infusion after gastrectomy. Anesth Analg 1998; 87(4): 907–10

    CAS  PubMed  Google Scholar 

  310. Kopacz DJ, Sharrock NE, Allen HW. A comparison of levobupivacaine 0.125%, fentanyl 4 microg/mL, or their combination for patient-controlled epidural analgesia after major orthopedic surgery. Anesth Analg 1999; 89(6): 1497–503

    CAS  PubMed  Google Scholar 

  311. Mecklem DW, Humphrey MD, Hicks RW. Efficacy of bupivacaine delivered by wound catheter for post-Caesarean section analgesia. Aust N Z J Obstet Gynaecol 1995; 35(4): 416–21

    CAS  PubMed  Google Scholar 

  312. Ozalp G, Guner F, Kuru N, et al. Postoperative patient-controlled epidural analgesia with Opioid bupivacaine mixtures. Can J Anaesth 1998; 45(10): 938–42

    CAS  PubMed  Google Scholar 

  313. Peng P, Claxton A, Chung F, et al. Femoral nerve block and ketorolac in patients undergoing anterior cruciate ligament reconstruction. Can J Anaesth 1999; 46(10): 919–24

    CAS  PubMed  Google Scholar 

  314. Scott DA, Chamley DM, Mooney PH, et al. Epidural ropivacaine infusion for postoperative analgesia after major lower abdominal surgery — a dose finding study. Anesth Analg 1995; 81(5): 982–6

    CAS  PubMed  Google Scholar 

  315. Vercauteren MP, Van Den BL, Kartawiadi SL, et al. Addition of bupivacaine to sufentanil in patient-controlled epidural analgesia after lower limb surgery in young adults: effect on analgesia and micturition. Reg Anesth Pain Med 1998; 23(2): 182–8

    CAS  PubMed  Google Scholar 

  316. Blake DW, Stainsby GV, Bjorksten AR, et al. Patient-controlled epidural versus intravenous pethidine to supplement epidural bupivacaine after abdominal aortic surgery. Anaesth Intensive Care 1998; 26(6): 630–5

    CAS  PubMed  Google Scholar 

  317. Ali PB, Cotton BR, Williamson KM, et al. Intraperitoneal bupivacaine or lidocaine does not provide analgesia after total abdominal hysterectomy. Br J Anaesth 1998; 80(2): 245–7

    CAS  PubMed  Google Scholar 

  318. Cepeda MS, Delgado M, Ponce M, et al. Equivalent outcomes during postoperative patient-controlled intravenous analgesia with lidocaine plus morphine versus morphine alone. Anesth Analg 1996; 83(1): 102–6

    CAS  PubMed  Google Scholar 

  319. Chia YY, Tan PH, Wang KY, et al. Lignocaine plus morphine in bolus patient-controlled intravenous analgesia lacks postoperative morphine-sparing effect. Eur J Anaesthesiol 1998; 15(6): 664–8

    CAS  PubMed  Google Scholar 

  320. Cobby TF, Reid MF. Wound infiltration with local anaesthetic after abdominal hysterectomy. Br J Anaesth 1997; 78(4): 431–2

    CAS  PubMed  Google Scholar 

  321. Cooper DW, Ryall DM, McHardy FE, et al. Patient-controlled extradural analgesia with bupivacaine, fentanyl, or a mixture of both, after Caesarean section. Br J Anaesth 1996; 76(5): 611–5

    CAS  PubMed  Google Scholar 

  322. Huffnagle HJ, Norris MC, Leighton BL, et al. Ilioinguinal iliohypogastric nerve blocks-before or after cesarean delivery under spinal anesthesia? Anesth Analg 1996; 82(1): 8–12

    CAS  PubMed  Google Scholar 

  323. Klein JR, Heaton JP, Thompson JP, et al. Infiltration of the abdominal wall with local anaesthetic after total abdominal hysterectomy has no opioid-sparing effect. Br J Anaesth 2000; 84(2): 248–9

    CAS  PubMed  Google Scholar 

  324. Mauerhan DR, Campbell M, Miller JS, et al. Intra-articular morphine and/or bupivacaine in the management of pain after total knee arthroplasty. J Arthroplasty 1997; 12(5): 546–52

    CAS  PubMed  Google Scholar 

  325. Schwarz SK, Franciosi LG, Ries CR, et al. Addition of femoral 3-in-1 blockade to intra-articular ropivacaine 0.2% does not reduce analgesic requirements following arthroscopic knee surgery. Can J Anaesth 1999; 46(8): 741–7

    CAS  PubMed  Google Scholar 

  326. Weinbroum AA, Weisenberg M, Rudick V, et al. Flumazenil potentiation of postoperative morphine analgesia. Clin J Pain 2000; 16(3): 193–9

    CAS  PubMed  Google Scholar 

  327. Dickert T, Hoffmann H, Zucker TP, et al. Low-dose midazolam reduces the alfentanil demand in elderly but not in young patients during extracorporeal shock wave lithotripsy. Anasthesiol Intensivmed Notfallmed Schmerzther 1993; 28(1): 13–7

    CAS  PubMed  Google Scholar 

  328. Ghouri AF, Taylor E, White PF. Patient-controlled drug administration during local anesthesia: a comparison of midazolam, propofol, and alfentanil. J Clin Anesth 1992; 4(6): 476–9

    CAS  PubMed  Google Scholar 

  329. Alves ND, Castro-Costa CM, de Carvalho AM, et al. Possible analgesic effect of vigabatrin in animal experimental chronic neuropathic pain. Arq Neuropsiquiatr 1999; 57(4): 916–20

    CAS  PubMed  Google Scholar 

  330. Combes X, Cerf C, Bouleau D, et al. The effects of residual pain on oxygenation and breathing pattern during morphine analgesia. Anesth Analg 2000; 90(1): 156–60

    CAS  PubMed  Google Scholar 

  331. De Kock M, Lavandhomme P, Scholtes JL. Intraoperative and postoperative analgesia using intravenous Opioid, Clonidine and lignocaine. Anaesth Intensive Care 1994; 22(1): 15–21

    PubMed  Google Scholar 

  332. Everett JJ, Patterson DR, Burns GL, et al. Adjunctive interventions for burn pain control: comparison of hypnosis and ativan: the 1993 Clinical Research Award. J Burn Care Rehabil 1993; 14(6): 676–83

    CAS  PubMed  Google Scholar 

  333. Turner G, Blake D, Buckland M, et al. Continuous extradural infusion of ropivacaine for prevention of postoperative pain after major orthopaedic surgery. Br J Anaesth 1996; 76(5): 606–10

    CAS  PubMed  Google Scholar 

  334. Dorman BH, Conroy JM, Duc TA, et al., et al. Postoperative analgesia after major shoulder surgery with interscalene brachial plexus blockade: etidocaine versus bupivacaine. South Med J 1994; 87(4): 502–5

    CAS  PubMed  Google Scholar 

  335. Sindrup SH, Jensen TS. Pharmacologic treatment of pain in polyneuropathy. Neurology 2000; 55(7): 915–20

    CAS  PubMed  Google Scholar 

  336. Bonezzi C, Demartini L. Treatment options in postherpetic neuralgia. Acta Neurol Scand Suppl 1999; 173: 25–35

    CAS  PubMed  Google Scholar 

  337. Alves ND, Castro-Costa CM, de Carvalho AM, et al. Possible analgesic effect of vigabatrin in animal experimental chronic neuropathic pain. Arq Neuropsiquiatr 1999; 57(4): 916–20

    CAS  PubMed  Google Scholar 

  338. Chen SR, Eisenach JC, McCaslin PP, et al. Synergistic effect between intrathecal non-NMDA antagonist and gabapentin on allodynia induced by spinal nerve ligation in rats. Anesthesiology 2000; 92(2): 500–6

    CAS  PubMed  Google Scholar 

  339. Nicholson B. Gabapentin use in neuropathic pain syndromes. Acta Neurol Scand 2000; 101(6): 359–71

    CAS  PubMed  Google Scholar 

  340. Fragoso YD, Carrazana EJ. Low doses of gabapentin may be helpful in the management of chronic daily headache. MedGenMed 2000 Aug 21: E52. Available from URL: http://www.medscape.com/Medscape/GeneralMedicine/journal/2000/v02.n04/mgm0821.frag/mgm0821.frag-01.html [Accessed 2001 Dec 16]

  341. Sindrup SH, Jensen TS. Pharmacologie treatment of pain in polyneuropathy. Neurology 2000; 55(7): 915–20

    CAS  PubMed  Google Scholar 

  342. Chandler A, Williams JE. Gabapentin, an adjuvant treatment for neuropathic pain in a cancer hospital. J Pain Symptom Manage 2000; 20(2): 82–6

    CAS  PubMed  Google Scholar 

  343. Wetzel CH, Connelly JF. Use of gabapentin in pain management. Ann Pharmacother 1997; 31(9): 1082–3

    CAS  PubMed  Google Scholar 

  344. Solaro C, Messmer UM, Uccelli A, et al. Low-dose gabapentin combined with either lamotrigine or carbamazepine can be useful therapies for trigeminal neuralgia in multiple sclerosis. Eur Neurol 2000; 44(1): 45–8

    CAS  PubMed  Google Scholar 

  345. Devulder J. Is 200mg lamotrigine daily analgesic or not?. Pain 2000; 86(1-2): 211–2

    CAS  PubMed  Google Scholar 

  346. Devulder J, De Laat M. Lamotrigine in the treatment of chronic refractory neuropathic pain. J Pain Symptom Manage 2000; 19(5): 398–403

    CAS  PubMed  Google Scholar 

  347. Carrieri PB, Bonuso S, Bruno R, et al. Efficacy of lamotrigine on sensory symptoms and pain in peripheral neuropathies. J Pain Symptom Manage 1999; 18(3): 154–6

    CAS  PubMed  Google Scholar 

  348. Klamt JG, Posner J. Effects of lamotrigine on pain-induced chemo-somatosensory evoked potentials. Anaesthesia 1999; 54(8): 774–7

    CAS  PubMed  Google Scholar 

  349. Bou-Abboud E, Nattel S. Molecular mechanisms of the reversal of imipramine-induced sodium channel blockade by alkalinization in human cardiac myocytes. Cardiovasc Res 1998; 38(2): 395–404

    CAS  PubMed  Google Scholar 

  350. Barber MJ, Starmer CF, Grant AO. Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circ Res 1991; 69(3): 677–96

    CAS  PubMed  Google Scholar 

  351. Lavoie PA, Beauchamp G, Elie R. Tricyclic antidepressants inhibit voltage-dependent calcium channels and Na(+)-Ca2+ exchange in rat brain cortex synaptosomes. Can J Physiol Pharmacol 1990; 68(11): 1414–8

    CAS  PubMed  Google Scholar 

  352. Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000; 25(3): 274–8

    CAS  PubMed  Google Scholar 

  353. Choe H, Kim JS, Ko SH, et al. Epidural Verapamil reduces analgesic consumption after lower abdominal surgery. Anesth Analg 1998; 86(4): 786–90

    CAS  PubMed  Google Scholar 

  354. Martin BR, Lichtman AH. Cannabinoid transmission and pain perception. Neurobiol Dis 1998; 5(6 Pt B): 447–61

    CAS  PubMed  Google Scholar 

  355. Fuentes JA, Ruiz-Gayo M, Manzanares J, et al. Cannabinoids as potential new analgesics. Life Sci 1999; 65(6–7): 675–85

    CAS  PubMed  Google Scholar 

  356. Welch SP, Eads M. Synergistic interactions of endogenous Opioids and cannabinoid systems. Brain Res 1999; 848(1–2): 183–90

    CAS  PubMed  Google Scholar 

  357. Mason Jr DJ, Lowe J, Welch SP. Cannabinoid modulation of dynorphin A: correlation to cannabinoid-induced antinociception. Eur J Pharmacol 1999; 378(3): 237–48

    CAS  PubMed  Google Scholar 

  358. Cichewicz DL, Martin ZL, Smith FL, et al. Enhancement mu Opioid antinociception by oral delta9-tetrahydrocannabinol: dose-response analysis and receptor identification. J Pharmacol Exp Ther 1999; 289(2): 859–67

    CAS  PubMed  Google Scholar 

  359. Smith FL, Cichewicz D, Martin ZL, et al. The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol. Pharmacol Biochem Behav 1998; 60(2): 559–66

    CAS  PubMed  Google Scholar 

  360. Buckett WR. Irreversible inhibitors of GABA transaminase induce antinociceptive effects and potentiate morphine. Neuropharmacology 1980; 19(8): 715–22

    CAS  PubMed  Google Scholar 

  361. Hadji F, Eastwood D, Fear S, et al. The impact of audit in a district general hospital on post-operative nausea and vomiting after major gynaecological surgery. Eur J Anaesthesiol 1998; 15(5): 595–9

    CAS  PubMed  Google Scholar 

  362. Silverman DG, Freilich J, Sevarino FB, et al. Influence of promethazine on symptom-therapy scores for nausea during patient-controlled analgesia with morphine. Anesth Analg 1992; 74(5): 735–8

    CAS  PubMed  Google Scholar 

  363. Walder AD, Aitkenhead AR. A comparison of droperidol and cyclizine in the prevention of postoperative nausea and vomiting associated with patient-controlled analgesia. Anaesthesia 1995; 50(7): 654–6

    CAS  PubMed  Google Scholar 

  364. Allen D, Jorgensen C, Sims C. Effect of tropisetron on vomiting during patient-controlled analgesia in children. Br J Anaesth 1999; 83(4): 608–10

    CAS  PubMed  Google Scholar 

  365. Clyburn PA, Rosen M. Patient-controlled analgesia with a mixture of pethidine and doxapram hydrochloride. A comparison of the incidence of respiratory dysrhythmias with pethidine alone. Anaesthesia 1988; 43(3): 190–3

    CAS  PubMed  Google Scholar 

  366. Doyle E, Byers G, McNicol LR, et al. Prevention of postoperative nausea and vomiting with transdermal hyoscine in children using patient-controlled analgesia. Br J Anaesth 1994; 72(1): 72–6

    CAS  PubMed  Google Scholar 

  367. Harris SN, Sevarino FB, Sinatra RS, et al. Nausea prophylaxis using transdermal scopolamine in the setting of patient-controlled analgesia. Obstet Gynecol 1991; 78(4): 673–7

    CAS  PubMed  Google Scholar 

  368. Alexander R, Lovell AT, Scingry D, et al. Comparison of ondansetron and droperidol in reducing postoperative nausea and vomiting associated with patient-controlled analgesia. Anaesthesia 1995; 50(12): 1086–8

    CAS  PubMed  Google Scholar 

  369. Gan TJ, Ginsberg B, Grant AP, et al. Double-blind, randomized comparison of ondansetron and intraoperative propofol to prevent postoperative nausea and vomiting. Anesthesiology 1996; 85(5): 1036–42

    CAS  PubMed  Google Scholar 

  370. Pueyo FJ, Carrascosa F, Lopez L, et al. Combination of ondansetron and droperidol in the prophylaxis of postoperative nausea and vomiting. Anesth Analg 1996; 83(1): 117–22

    CAS  PubMed  Google Scholar 

  371. Dresner M, Dean S, Lumb A, et al. High-dose ondansetron regimen vs droperidol for morphine patient-controlled analgesia. Br J Anaesth 1998; 81(3): 384–6

    CAS  PubMed  Google Scholar 

  372. Davies PR, Warwick P, O’Connor M. Antiemetic efficacy of ondansetron with patient-controlled analgesia. Anaesthesia 1996; 51(9): 880–2

    CAS  PubMed  Google Scholar 

  373. Barrow PM, Hughes DG, Redfern N, et al. Influence of droperidol on nausea and vomiting during patient-controlled analgesia. Br J Anaesth 1994; 72(4): 460–1

    CAS  PubMed  Google Scholar 

  374. Freedman GM, Kreitzer JM, Reuben SS, et al. Improving patient-controlled analgesia: adding droperidol to morphine sulfate to reduce nausea and vomiting and potentiate analgesia. Mt Sinai J Med 1995; 62(3): 221–5

    CAS  PubMed  Google Scholar 

  375. Hopkins D, Shipton EA, Tissandie JP. Extending patient-controlled analgesia to patient-controlled neuroleptanalgesia. S Afr J Surg 1992; 30(4): 168–70

    CAS  PubMed  Google Scholar 

  376. Klahsen AJ, O’Reilly D, McBride J, et al. Reduction of postoperative nausea and vomiting with the combination of morphine and droperidol in patient-controlled analgesia. Can J Anaesth 1996; 43(11): 1100–7

    CAS  PubMed  Google Scholar 

  377. Lamond CT, Robinson DL, Boyd JD, et al. Addition of droperidol to morphine administered by the patient-controlled analgesia method: what is the optimal dose? Eur J Anaesthesiol 1998; 15(3): 304–9

    CAS  PubMed  Google Scholar 

  378. McKenzie R, Tantisira B, Jackson D, et al. Antiemetic efficacy of a droperidol-morphine combination in patient-controlled analgesia. J Clin Anesth 1995; 7(2): 141–7

    CAS  PubMed  Google Scholar 

  379. Ng KF, Tsui SL, Yang JC, et al. Comparison of tramadol and tramadol/droperidol mixture for patient-controlled analgesia. Can J Anaesth 1997; 44(8): 810–5

    CAS  PubMed  Google Scholar 

  380. Russell D, Duncan LA, Frame WT, et al. Patient-controlled analgesia with morphine and droperidol following caesarean section under spinal anaesthesia. Acta Anaesthesiol Scand 1996; 40(5): 600–5

    CAS  PubMed  Google Scholar 

  381. Sharma SK, Davies MW. Patient-controlled analgesia with a mixture of morphine and droperidol. Br J Anaesth 1993; 71(3): 435–6

    CAS  PubMed  Google Scholar 

  382. Williams OA, Clarke FL, Harris RW, et al. Addition of droperidol to patient-controlled analgesia: effect on nausea and vomiting. Anaesthesia 1993; 48(10): 881–4

    CAS  PubMed  Google Scholar 

  383. Gan TJ, Alexander R, Fennelly M, et al. Comparison of different methods of administering droperidol in patient-controlled analgesia in the prevention of postoperative nausea and vomiting. Anesth Analg 1995; 80(1): 81–5

    CAS  PubMed  Google Scholar 

  384. Habre W, Wilson D, Johnson CM. Extrapyramidal side-effects from droperidol mixed with morphine for patient-controlled analgesia in two children. Paediatr Anaesth 1999; 9(4): 362–4

    CAS  PubMed  Google Scholar 

  385. Kaufmann MA, Rosow C, Schnieper P, et al. Prophylactic antiemetic therapy with patient-controlled analgesia: a double-blind, placebo-controlled comparison of droperidol, metoclopramide, and tropisetron. Anesth Analg 1994; 78(5): 988–94

    CAS  PubMed  Google Scholar 

  386. Wrench IJ, Ward JE, Walder AD, et al. The prevention of postoperative nausea and vomiting using a combination of ondansetron and droperidol. Anaesthesia 1996; 51(8): 776–8

    CAS  PubMed  Google Scholar 

  387. Holland MS. Central anticholinergic syndrome in a pediatric patient following transdermal scopolamine patch placement. Nurse Anesth 1992; 3(3): 121–4

    CAS  PubMed  Google Scholar 

  388. Liu K, Hsu CC, Chia YY. The effect of dose of dexamethasone for antiemesis after major gynecological surgery. Anesth Analg 1999; 89(5): 1316–8

    CAS  PubMed  Google Scholar 

  389. Liu K, Hsu CC, Chia YY. Effect of dexamethasone on postoperative emesis and pain. Br J Anaesth 1998; 80(1): 85–6

    CAS  PubMed  Google Scholar 

  390. Montgomery JE, Sutherland CJ, Kestin IG, et al. Infusions of subhypnotic doses of propofol for the prevention of postoperative nausea and vomiting. Anaesthesia 1996; 51(6): 554–7

    CAS  PubMed  Google Scholar 

  391. Smyth E, Egan TD. Apneic oxygenation associated with patientcontrolled analgesia. J Clin Anesth 1998; 10(6): 499–501

    CAS  PubMed  Google Scholar 

  392. Ballantyne JC, Loach AB, Carr DB. Itching after epidural and spinal opiates. Pain 1988; 33(2): 149–60

    CAS  PubMed  Google Scholar 

  393. Goldberg A, Korzets Z, Bernheim J, et al. Cutaneous responses to histamine, compound 48/80, and codeine in patients with chronic renal failure. Ann Allergy 1991; 67(5): 525–8

    CAS  PubMed  Google Scholar 

  394. Fjellner B, Hagermark O. Potentiation of histamine-induced itch and flare responses in human skin by the enkephalin analogue FK-33-824, beta-endorphin and morphine. Arch Dermatol Res 1982; 274(1–2): 29–37

    CAS  PubMed  Google Scholar 

  395. Thomas DA, Williams GM, Iwata K, et al. The medullary dorsal horn. A site of action of morphine in producing facial scratching in monkeys. Anesthesiology 1993; 79(3): 548–54

    CAS  PubMed  Google Scholar 

  396. Bergasa NV, Ailing DW, Talbot TL, et al. Effects of naloxone infusions in patients with the pruritus of cholestasis. A double-blind, randomized, controlled trial. Ann Intern Med 1995; 123(3): 161–7

    CAS  PubMed  Google Scholar 

  397. Bergasa NV, Thomas DA, Vergalla J, et al. Plasma from patients with the pruritus of cholestasis induces Opioid receptor-mediated scratching in monkeys. Life Sci 1993; 53(16): 1253–7

    CAS  PubMed  Google Scholar 

  398. Kendrick WD, Woods AM, Daly MY, et al. Naloxone versus nalbuphine infusion for prophylaxis of epidural morphine-induced pruritus. Anesth Analg 1996; 82(3): 641–7

    CAS  PubMed  Google Scholar 

  399. Horta ML, Ramos L, Goncalves ZD, et al. Inhibition of epidural morphine-induced pruritus by intravenous droperidol. The effect of increasing the doses of morphine and of droperidol. Reg Anesth 1996; 21(4): 312–7

    CAS  PubMed  Google Scholar 

  400. Etches RC, Gammer TL, Cornish R. Patient-controlled epidural analgesia after thoracotomy: a comparison of meperidine with and without bupivacaine. Anesth Analg 1996; 83(1): 81–6

    CAS  PubMed  Google Scholar 

  401. Henrich WL. Analgesic nephropathy. Trans Am Clin Climatol Assoc 1998; 109: 147–58

    CAS  PubMed  PubMed Central  Google Scholar 

  402. Murray MD, Brater DC. Effects of NSAIDs on the kidney. Prog Drug Res 1997; 49: 155–71

    CAS  PubMed  Google Scholar 

  403. Wen SF. Nephrotoxicities of nonsteroidal anti-inflammatory drugs. J Formos Med Assoc 1997; 96(3): 157–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany [DFG Lo 612/3-1, GE 695/1-1, SFB 553 (C6)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Lötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lötsch, J., Skarke, C., Tegeder, I. et al. Drug Interactions with Patient-Controlled Analgesia. Clin Pharmacokinet 41, 31–57 (2002). https://doi.org/10.2165/00003088-200241010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241010-00004

Keywords

Navigation