Log in

Development of Technologies for Sensing Ozone in Ambient Air

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Ozone (O3) gas is widely used as a strong oxidizing agent for many purposes, such as the decomposition/removal of organic contaminants and photoresist, and the deodorization/disinfection of air and water. However, ozone is highly toxic to the human body when the air concentration exceeds about 1 ppm. Therefore, there is increasing demand for simple, sensitive, reliable, and cost-effective techniques for sensing ozone gas. This article describes the features, advantages, and disadvantages of the available, practical techniques for sensing ozone gas in ambient air. The advantages of optical gas sensors as next-generation sensors is specifically introduced. The features of photoluminescent, semiconductor nanoparticles (quantum dots, QDs) as bright phosphors with the potential for various applications is further explored. Lastly, recent research results demonstrating the ozone sensitivity of photoluminescent CdSe-based core-shell quantum dots are presented. These results strongly suggest that optical ozone sensing using photoluminescent quantum dots is a promising technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. "Gas Sensors", ed. G. Sberveglieri, 1992, Kluwer, Dordrecht.

  2. "Handbook of Biosensor and Chemical Sensors (in Japanese)", ed. M. Karube, 2007, Technosystem, Tokyo.

  3. "Advanced Chemical Sensors (in Japanese)", ed. Jpn. Assoc. Chem. Sens., Electrochem. Soc. Jpn., 2008, TIC, Kyoto.

    Google Scholar 

  4. N. Nishizawa, in "Chemical Sensor Technology", ed. T. Seiyama, 1988, Vol. 1, Kodansha, Tokyo, 237.

    Article  Google Scholar 

  5. K. Eguchi, in "Gas Sensors'", ed. G. Sberveglieri, 1992, Kluwer, Dordrecht, 307.

    Book  Google Scholar 

  6. O.S. Wolfbeis, Anal. Chem., 2002, 74, 2663.

    Article  CAS  PubMed  Google Scholar 

  7. J. Shi, Y. Zhu, X. Zhang, W.R.G. Baeyens, A.M. Garcia-Campaña, TrAC, Trends Anal. Chem., 2004, 23, 351.

    Article  CAS  Google Scholar 

  8. M. Ando, TrAC, Trends Anal. Chem., 2006, 25, 937.

    Article  CAS  Google Scholar 

  9. O.S. Wolfbeis, Anal. Chem., 2008, 80, 4269.

    Article  CAS  PubMed  Google Scholar 

  10. X.D. Wang and O.S. Wolfbeis, Anal. Chem., 2012, 85, 487.

    PubMed  Google Scholar 

  11. J. Hodgkinson and R.P. Tatam, Meas. Sci. Technol., 2013, 24, Paper No. 012004, 1.

    Google Scholar 

  12. D.B. Menzel, J. Toxicol. Environ. Health, 1984, 13, 183.

    Article  CAS  PubMed  Google Scholar 

  13. M. Lippmann, J. Air Pollut. Control Assoc., 1989, 39, 672.

    CAS  Google Scholar 

  14. T. Takada, in "Chemical Sensor Technology", ed. T. Seiyama, 1989, Vol. 2, Kodansha, Tokyo, 59.

    Article  Google Scholar 

  15. Int. Ozone Assoc., http://www.ioa-ea3g.org/ozonethemes/ozone-and-its-application.html.

  16. T. Takada, K. Suzuki, M. Nakane, Sens. Actuators, B, 1993, 13, 404.

    Article  CAS  Google Scholar 

  17. M. Ivanovskaya, A. Gurlo, P. Bogdanov, Sens. Actuators, B, 2001, 77, 264.

    Article  CAS  Google Scholar 

  18. K. Aguir, C. Lemire, D.B.B. Lollman, Sens. Actuators, B, 2002, 84, 1.

    Article  CAS  Google Scholar 

  19. S. Thirumalairajan and V.R. Mastelaro, ACS Appl. Mater. Interfaces, 2014, 6, 21739.

    Article  PubMed  Google Scholar 

  20. New Ozone Sensor Modules Equipped with Excellent Sensitivity, Selectivity, Stability and Long Life Ozone Sensor (Technical News, FiS Inc.), http://www.envinsci.co.uk/wp-content/uploads/2016/04/ETECH25-O3MODULE.pdf.

  21. Ozone Sensors and Instruments for the Measurement and Control of Ozone in Air (Aeroqual Ltd.), http://www.aeroqual.com/ozone.

  22. MQ131 Semiconductor Sensor for Ozone (Henan Hanwei Electronics Co., Ltd.), http://www.gassensor.ru/data/files/ozone/MQ-131-O3.pdf.

  23. W. Penrose, L. Pan, J. Stetter, W. Ollison, Anal. Chim. Acta, 1995, 313, 209.

    Article  CAS  Google Scholar 

  24. D. Ebeling, V. Patel, M. Findlay, J. Stetter, Sens. Actuators, B, 2009, 137, 129.

    Article  Google Scholar 

  25. Portable Gas Detectors (New Cosmos Electric Co., Ltd.), https://www.newcosmos-global.com/product/2176/.

  26. TX-KFP Diffusion Type Detector (New Cosmos Europe), http://www.newcosmos-europe.com/products/diffusion-type-detectors/340-diffusion-type-detector-exhaust-monitor.html.

  27. D.H. Horstman, D.A. Levaggi, B.R. Appel, E.L. Kothny, J.G. Wendt, in "Methods of Air Sampling and Analysis", ed. J.P. Lodge, Jr., 3rd ed., 1989, Lewis, Chelsea, 422.

    Google Scholar 

  28. K.L. Wilson and J.W. Birks, Environ. Sci. Technol., 2006, 40, 6361.

    Article  PubMed  Google Scholar 

  29. APOA-370 Ambient Ozone Monitor (HORIBA, Ltd.), http://www.horiba.com/process-environmental/products/ambient/details/apoa-370-ambient-ozone-monitor-276/.

  30. Ozone Analyzer Model OA-781 (KIMOTO Electric Co., Ltd.), http://www.kimoto-electric.co.jp/english/product/pdf/oa781.pdf.

  31. UV-100 UV Ozone Analyzer (Eco Sensors Division of KWJ Engineering Inc.), https://www.ecosensors.com/product/uv-100-uv-ozone-analyzer-data-sheet/.

  32. Portable Instruments for Ambient Air Pollution Measurements —All Products—Ambient Ozone, Industrial Ozone & Education (2B Technologies, Inc.), http://twobtech.com/products.html.

  33. M.R. Straka, G. Gordon, G.E. Pacey, Anal. Chem., 1985, 57, 1799.

    Article  CAS  Google Scholar 

  34. E.P. Felix, K.A.D. de Souza, C.M. Dias, A.A. Cardoso, J. AOAC Int., 2006, 89, 480.

    CAS  PubMed  Google Scholar 

  35. In "Gas Detection Tubes and Sampling Handbook", 2nd ed., 2013, RAE Systems by Honeywell, TB-1001-02, 80.

    Google Scholar 

  36. Gas Detection Tubes and Sampling Handbook (RAE Systems Inc.), http://www.raesystems.com/sites/default/files/content/resources/eBook-gas-detection-tube-and-sampling-handbook.pdf.

  37. Ozone Detector Tube (Gastec Co.), http://www.gastec.co.jp/en/product/school/detail/id=2615.

  38. Kitagawa Gas Detector Tube System (Komyo Rikagaku Kogyo K.K.), http://www.komyokk.co.jp/kweb/kenresult.do?je=1.

  39. E.D. Boelter, G.L. Putnam, E.I. Lash, Anal. Chem., 1950, 22, 1533.

    Article  CAS  Google Scholar 

  40. C.M. Birdsall, A.C. Jenkins, E. Spadinger, Anal. Chem., 1952, 24, 662.

    Article  CAS  Google Scholar 

  41. J.A. Hodgeson, R.E. Baumgardner, B.E. Martin, K.A. Rehme, Anal. Chem., 1971, 43, 1123.

    Article  CAS  Google Scholar 

  42. S.L. Kopczynski and J.J. Bufalini, Anal. Chem., 1971, 43, 1126.

    Article  Google Scholar 

  43. G. Gordon, K. Rakness, D. Vornehm, D. Wood, J. Am. Water Works Assoc., 1989, 87, 72.

    Article  Google Scholar 

  44. G.W. Nederbragt, A. Van der Horst, T. Van Duijn, Nature, 1965, 206, 87.

    Article  CAS  Google Scholar 

  45. D. Bersis and E. Vassiliou, Analyst, 1966, 97, 499.

    Article  Google Scholar 

  46. R. Guicherit, Z. Anal. Chem., 1971, 256, 177.

    Article  CAS  Google Scholar 

  47. E.A. Hill, J.K. Nelson, J.W. Birks, Anal. Chem., 1982, 54, 541.

    Article  CAS  Google Scholar 

  48. P. Mikuska and Z. Vecera, Anal. Chim. Acta, 1988, 374, 297.

    Article  Google Scholar 

  49. C. Eipel, P. Jeroschewski, I. Steinke, Anal. Chim. Acta, 2003, 497, 145.

    Article  Google Scholar 

  50. T. Takayanagi, X. Su, P.K. Dasgupta, K. Martinelango, G. Li, R.S. Al-Horr, R.W. Shaw, Anal. Chem., 2003, 75, 5916.

    Article  CAS  PubMed  Google Scholar 

  51. A. Zahn, J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kühner, H. Franke, Atmos. Meas. Tech., 2012, 5, 363.

    Article  CAS  Google Scholar 

  52. M265E Ozone Analyzer (Teledyne API, Teledyne Technologies Inc.), http://www.teledyne-api.com/manuals/07337b_t265_addendum.pdf.

  53. Model 265E Chemiluminescence Ozone Analyzer (Teledyne API, Teledyne Technologies Inc.), http://www.teledyne-api.com/manuals/06626b_265e_addendum.pdf.

  54. ASTM D5149-02 (2016), Standard Test Method for Ozone in the Atmosphere: Continuous Measurement by Ethylene Chemiluminescence (ASTM International), https://www.astm.org/Standards/D5149.htm.

  55. M. Ando, C. Swart, E. Pringsheim, V.M. Mirsky, O.S. Wolfbeis, Solid State Ionics, 2002, 752-753, 819.

    Article  Google Scholar 

  56. M. Ando, C. Swart, E. Pringsheim, V.M. Mirsky, O.S. Wolfbeis, Sens. Actuators, B, 2005, 708, 528.

    Article  Google Scholar 

  57. M. Ando, T. Kamimura, K. Uegaki, V. Biju, Y. Shigeri, Microchim. Acta, 2016, 783, 3019.

    Article  Google Scholar 

  58. H. Weller, Angew. Chem., Int. Ed. Engl., 1993, 32, 41.

    Article  Google Scholar 

  59. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 1993, 775, 8706.

    Article  Google Scholar 

  60. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B, 1997, 707, 9463.

    Article  Google Scholar 

  61. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano Lett., 2001, 7, 207.

    Article  Google Scholar 

  62. N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B, 2002, 706, 7177.

    Article  Google Scholar 

  63. A.I. Ekimov and A.A. Onushchenko, JETP Lett., 1981, 34, 345.

    Google Scholar 

  64. S. Hayashi, M. Ito, H. Kanamori, Solid State Commun., 1982, 44, 75.

    Article  CAS  Google Scholar 

  65. S. Hayashi and H. Kanamori, Phys. Rev. B, 1982, 26, 7079.

    Article  Google Scholar 

  66. A.I. Ekimov, A.L. Efros, A.A. Onushchenko, Solid State Commun., 1985, 56, 921.

    Article  CAS  Google Scholar 

  67. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science, 1998, 287, 2013.

    Article  Google Scholar 

  68. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, Nano Lett., 2009, 9, 2532.

    Article  CAS  PubMed  Google Scholar 

  69. V. Biju, Chem. Soc. Rev., 2014, 43, 744.

    Article  CAS  PubMed  Google Scholar 

  70. S.F. Wuister, C. de Mello Donegá, A. Meijerink, J. Phys. Chem. B, 2004, 708, 17393.

    Article  Google Scholar 

  71. V.V. Breus, C.D. Heyes, G.U. Nienhaus, J. Phys. Chem. C, 2007, 777, 18589.

    Article  Google Scholar 

  72. A.M. Munro and D.S. Ginger, Nano Lett., 2008, 8, 2585.

    Article  PubMed  Google Scholar 

  73. H. Zhu, M.Z. Hu, L. Shao, K. Yu, R. Dabestani, Md. B. Zaman, S. Liao, J. Nanomater., 2014, Article ID 324972, 1.

    Google Scholar 

  74. P. Jorge, M.A. Martins, T. Trindade, J.L. Santos, F. Farahi, Sensors, 2007, 7, 3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. M.F. Frasco and N. Chaniotakis, Sensors, 2009, 9, 7266.

    Article  PubMed  Google Scholar 

  76. T. **, A. Sasaki, M. Kinjo, J. Miyazaki, Chem. Commun., 2010, 46, 2408.

    Article  CAS  Google Scholar 

  77. S. Silvi and A. Credi, Chem. Soc. Rev., 2015, 44, 4275.

    Article  PubMed  Google Scholar 

  78. T. Kurabayashi, N. Funaki, T. Fukuda, S. Akiyama, M. Suzuki, Anal. Sci., 2014, 30, 545.

    Article  CAS  PubMed  Google Scholar 

  79. R. Freeman, T. Finder, I. Willner, Angew. Chem., Int. Ed., 2009, 48, 7818.

    Article  CAS  Google Scholar 

  80. X. Guan, H. Fan, Y. Zhang, D. Zhang, T. Jia, S. Lai, Z. Lei, Anal. Sci., 2016, 32, 161.

    Article  CAS  PubMed  Google Scholar 

  81. H. Kawasaki, Anal. Sci., 2017, 33, 987.

    Article  CAS  PubMed  Google Scholar 

  82. A. Kumar and R.K. Dutta, Anal. Sci., 2017, 33, 565.

    Article  PubMed  Google Scholar 

  83. X.-W. Liu, J.-S. Shu, Y. **ao, Y. Yang, S.-B. Zhang, Anal. Sci., 2017, 33, 381.

    Article  CAS  PubMed  Google Scholar 

  84. Q. Zhou, C. Liu, H. Zhang, C. Zhao, Y. Wang, Anal. Sci., 2017, 33, 957.

    Article  PubMed  Google Scholar 

  85. K. Hagihara, K. Tsukagoshi, C. Nakajima, S. Esaki, M. Hashimoto, Anal. Sci., 2016, 32, 367.

    Article  CAS  PubMed  Google Scholar 

  86. S.S. Pillai, H. Yukawa, D. Onoshima, V. Biju, Y. Baba, Anal. Sci., 2017, 33, 137.

    Article  CAS  PubMed  Google Scholar 

  87. F. Vetrone, R. Naccache, A. Zamarrón, A. de la Juarranz Fuente, F. Sanz-Rodrfguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcfa Sole, J.A. Capobianco, ACS Nano, 2010, 4, 3254.

    Article  CAS  PubMed  Google Scholar 

  88. A.A. Saren, S.N. Kuznotsov, A.S. Kuznetsov, V.A. Gurtov, ChemPhysChem, 2011, 72, 846.

    Article  Google Scholar 

  89. A.Y. Nazzal, L. Qu, X. Peng, M. **ao, Nano Lett., 2003, 3, 819.

    Article  CAS  Google Scholar 

  90. M. Ando, T. Kamimura, K. Uegaki, V. Biju, J.T. Damasco Ty, Y. Shigeri, Sens. Actuators, B, 2017, 246, 1074.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masanori Ando or Yasushi Shigeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, M., Biju, V. & Shigeri, Y. Development of Technologies for Sensing Ozone in Ambient Air. ANAL. SCI. 34, 263–267 (2018). https://doi.org/10.2116/analsci.34.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.263

Keywords

Navigation