Log in

Chemosensing Ensembles of 2-(2-Thiazolylazo)-p-cresol with Metal Ions in Colorimetric Detection of Anions

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper reports that changing metal ions (Co2+, Ni2+, Cu2+, or Cd2+) in the 2-(2-thiazolylazo)-P-cresol (TAC)-metal ensemble may generate varied optical responses to anions. The TAC and Ni2+ ensemble can detect and quantify CN- in a highly sensitive and selective manner. CN- competes for the Ni2+ present in the ensemble during recognition events, which thereby triggers colorimetric and absorption spectral changes. CN- and S2- decomposed TAC-Cu2+ ensemble by forming [Cu(CN)X]n-species and CuS, respectively; however, the discrimination of CN- and S2- was not achieved. The TAC-Co2+ ensemble exhibited discriminated interaction with CN- through the absorption channel, but CN- was not quantitatively determined. Although the TAC-Cd2+ ensemble responded to different anions, it did not recognize each anion selectively. These results demonstrated that metal ions can powerfully modulate anion identification to some extent, which can be an effective strategy to achieve selectivity of certain anions by varying the metal ions in the ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2003, 103, 4419.

    Article  PubMed  Google Scholar 

  2. M. E. Moragues, R. Martínez-Máñez, and F. Sancenón, Chem. Soc. Rev., 2011, 40, 2593.

    Article  CAS  PubMed  Google Scholar 

  3. H. Khajehsharifi and M. M. Bordbar, Sens. Actuators, B, 2015, 209, 1015.

    Article  CAS  Google Scholar 

  4. P. Singh, H. Singh, G. Bhargava, and S. Kumar, J. Mater. Chem. C, 2015, 3, 5524.

    Article  CAS  Google Scholar 

  5. X. Li, X. Gao, W. Shi, and H. Ma, Chem. Rev., 2014, 114, 590.

    Article  CAS  PubMed  Google Scholar 

  6. P. A. Gale and C. Caltagirone, Chem. Soc. Rev., 2015, 44, 4212.

    Article  CAS  PubMed  Google Scholar 

  7. V. Amendola, L. Fabbrizzi, and L. Mosca, Chem. Soc. Rev., 2010, 39, 3889.

    Article  CAS  PubMed  Google Scholar 

  8. M. Chhatwal, A. Kumar, V. Singh, R. D. Gupta, and S. K. Awasthi, Coord. Chem. Rev., 2015, 292, 30.

    Article  CAS  Google Scholar 

  9. J. Chen, Y. Li, W. Zhong, Q. Hou, H. Wang, X. Sun, and P. Yi, Sens. Actuators, B, 2015, 206, 230.

    Article  CAS  Google Scholar 

  10. Q. Zhou, Y. Zhu, P. Sheng, Z. Wu, and Q. Cai, RSC Adv., 2014, 4, 46951.

    Article  CAS  Google Scholar 

  11. A. K. Mahapatra, S. Mondal, S. K. Manna, K. Maiti, R. Maji, Md. R. Uddin, S. Mandal, D. Sarkar, T. K. Mondal, and D. K. Maiti, Dalton Trans., 2015, 44, 6490.

    Article  CAS  PubMed  Google Scholar 

  12. L. Tang, M. Cai, Z. Huang, K. Zhong, S. Hou, Y. Bian, and R. Nandhakumar, Sens. Actuators, B, 2013, 185, 188.

    Article  CAS  Google Scholar 

  13. L. Tang, P. Zhou, Q. Zhang, Z. Huang, J. Zhao, and M. Cai, Inorg. Chem. Commun., 2013, 36, 100.

    Article  CAS  Google Scholar 

  14. K. Ren, X. Shang, J. Fu, P. Zhao, and J. Zhang, Polyhedron, 2016, 104, 99.

    Article  CAS  Google Scholar 

  15. A. Ojida, T. Sakamoto, M. Inoue, S. Fujishima, G. Lippens, and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543.

    Article  CAS  PubMed  Google Scholar 

  16. S. Lee, K. K. Y. Yuen, K. A. Jolliffe, and J. Yoon, Chem. Soc. Rev., 2015, 44, 1749.

    Article  CAS  PubMed  Google Scholar 

  17. R. K. Pathak, J. Dessingou, and C. P. Rao, Anal. Chem., 2012, 84, 8294.

    Article  CAS  PubMed  Google Scholar 

  18. J. Wang and C. S. Ha, Tetrahedron, 2010, 66, 1846.

    Article  CAS  Google Scholar 

  19. J. Wang and C. S. Ha, Analyst, 2010, 135, 1214.

    Article  CAS  PubMed  Google Scholar 

  20. A. Hens, P. Mondal, and K. K. Rajak, Polyhedron, 2015, 85, 255.

    Article  CAS  Google Scholar 

  21. S. Biswas, A. K. Pramanik, and T. K. Mondal, J. Mol. Struct., 2015, 1088, 28.

    Article  CAS  Google Scholar 

  22. V. A. Lemos, V. J. Ferreira, J. A. Barreto, and L. A. Meira, Water, Air, Soil Pollut., 2015, 226, 1.

    Google Scholar 

  23. V. A. Lemos, E. S. Santos, M. S. Santos, and R. T. Yamaki, Microchim. Acta, 2007, 158, 189.

    Article  CAS  Google Scholar 

  24. X. J. Zhao and C. Z. Huang, TrAC, Trends Anal. Chem., 2010, 29, 354.

    Article  CAS  Google Scholar 

  25. Z. Xu, X. Chen, H. N. Kim, and J. Yoon, Chem. Soc. Rev., 2010, 39, 127.

    Article  CAS  PubMed  Google Scholar 

  26. T. D. Ashton, K. A. Jolliffe, and F. M. Pfeffer, Chem. Soc. Rev., 2015, 44, 4547.

    Article  CAS  PubMed  Google Scholar 

  27. X. Cao, W. Lin, and L. He, Org. Lett., 2011, 13, 4716.

    Article  CAS  PubMed  Google Scholar 

  28. R. G. Upendar, D. Priyadip, S. Sukdeb, B. Mithu, K. G. Sudip, and D. Amitava, Chem. Commun., 2013, 49, 255.

    Article  Google Scholar 

  29. W. Hao, A. McBride, S. McBride, J. P. Gao, and Z. Y. Wang, J. Mater. Chem., 2011, 21, 1040.

    Article  CAS  Google Scholar 

  30. X. Lou, J. Qin, and Z. Li, Analyst, 2009, 134, 2071.

    Article  CAS  PubMed  Google Scholar 

  31. K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T. Komatsu, T. Ueno, T. Terai, H. Kimura, and T. Naganot, J. Am. Chem. Soc., 2011, 133, 18003.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Hao, W. Chen, L. Wang, X. Zhu, Y. Zhang, P. Qu, L. Liu, B. Zhou, Y. N. Liu, and M. Xu, Talanta, 2015, 143, 307.

    Article  CAS  PubMed  Google Scholar 

  33. Q. Zhou, Y. Zhu, P. Sheng, Z. Wu, and Q. Cai, RSC Adv., 2014, 4, 46951.

    Article  CAS  Google Scholar 

  34. T. Momeni-Isfahani and A. Niazi, Spectrochim. Acta, Part A, 2014, 120, 630.

    Article  CAS  Google Scholar 

  35. W. I. White and J. I. Legg, J. Am. Chem. Soc., 1975, 97, 3937.

    Article  CAS  PubMed  Google Scholar 

  36. A. Mirmohseni and A. Alipour, Sens. Actuators, B, 2002, 84, 245.

    Article  CAS  Google Scholar 

  37. F. Meyer, R. F. Winter, and E. Kaifer, Inorg. Chem., 2001, 40, 4597.

    Article  CAS  PubMed  Google Scholar 

  38. A. Zheng, D. A. Dzombak, and R. G. Luthy, Environ. Sci. Technol., 2003, 37, 107.

    Article  CAS  PubMed  Google Scholar 

  39. A. K. Singh, P. K. Yadav, N. Kumari, R. Nagarajan, and L. Mishra, J. Mater. Chem. C, 2015, 3, 12123.

    Article  CAS  Google Scholar 

  40. Y. Fu, Q. C. Feng, X. J. Jiang, H. Xu, M. Li, and S. Q. Zang, Dalton Trans., 2014, 43, 5815.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H. B. L. gratefully acknowledges financial support from the NSFC (Grant Nos. 31360020 and 31560014), GXNSFC (Grant No. 2014GXNSFCA118003), the Scientific Research Foundation of Guangxi University (Grant No. XGZ130080) and Hundred-Talent Program (Guangxi Province). J. W. thanks the NSFC (Grant No. 21567002), GXNSFC (Grant No. 2015GXNSFCA139005), as well as the Scientific Research Foundation of Guangxi University (Grant No. XGZ130081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **g Wang or Hai-Bo Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lan, B. & Liu, HB. Chemosensing Ensembles of 2-(2-Thiazolylazo)-p-cresol with Metal Ions in Colorimetric Detection of Anions. ANAL. SCI. 33, 677–682 (2017). https://doi.org/10.2116/analsci.33.677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.677

Keywords

Navigation