Log in

A Novel Hydrogen Fluoride Assisted–Glass Surface Etching Based Liquid Phase Microextraction for the Determination of 4-n-Nonylphenol in Water by Gas Chromatography–Mass Spectrometry with Matrix Matching Strategy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel extraction method named hydrogen fluoride assisted–glass surface etching based liquid phase microextraction (HF-GSE-LPME) was proposed to determine 4-n-nonylphenol at trace levels by gas chromatography–mass spectrometry (GC-MS). After the evaluation of system analytical performance for the HF-GSE-LPME-GC-MS system, limit of detection (LOD) and limit of quantification (LOQ) values were calculated as 7.1 and 23.8 ng/g, respectively. Enhancement in detection power of the method was determined to be 22 fold when LOD values of the GC-MS and HF-GSE-LPMEGC-MS systems were compared with each other. Applicability and accuracy of the established method were checked by performing spiking experiments. A matrix matching calibration strategy was applied to boost the accuracy of quantification in both matrices, and the percent recovery results obtained for bottled drinking water and dam lake water samples were in the range of 98–107 and 90–117%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shafei, M. M. Ramzy, A. I. Hegazy, A. K. Husseny, U. G. EL-hadary, M. M. Taha, and A. A. Mosa, Gene, 2018, 647, 235.

    Article  CAS  PubMed  Google Scholar 

  2. P. D. Darbre, Curr. Opin. Endocr. Metab. Res, 2019, 7, 26.

    Article  Google Scholar 

  3. L. Jones and F. Regan, “Endocrine Disrupting Chemicals”, 2019, Elsevier, 31.

    Google Scholar 

  4. E. Diamanti-Kandarakis, J. P. Bourguignon, L. C. Giudice, R. Hauser, G. S. Prins, A. M. Soto, R. T. Zoeller, and A. C. Gore, Endocr. Rev., 2009, 30, 293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Giulivo, M. Lopez de Alda, E. Capri, and D. Barceló, Environ. Res., 2016, 151, 251.

    Article  CAS  PubMed  Google Scholar 

  6. Z. Lu and J. Gan, Environ. Int., 2014, 73, 334.

    Article  CAS  PubMed  Google Scholar 

  7. A. Soares, B. Guieysse, B. Jefferson, E. Cartmell, and J. N. Lester, Environ. Int., 2008, 34, 1033.

    Article  CAS  PubMed  Google Scholar 

  8. A. L. Blankenship and K. Coady, Encycl. Toxicol., 2005, 260.

    Book  Google Scholar 

  9. P. Urriola-Muñoz, X. Li, T. Maretzky, D. R. McIlwain, T. W. Mak, J. G. Reyes, C. P. Blobel, and R. D. Moreno, J. Cell. Physiol., 2018, 233, 2247.

    Article  PubMed  Google Scholar 

  10. H. W. Chen, C. H. Liang, Z. M. Wu, E. E. Chang, T. F. Lin, P. C. Chiang, and G. S. Wang, Sci. Total Environ., 2013, 449, 20.

    Article  CAS  PubMed  Google Scholar 

  11. C. Di Dong, C. W. Chen, and C. F. Chen, Chemosphere, 2015, 134, 588.

    Article  CAS  PubMed  Google Scholar 

  12. K. Vargas-Berrones, L. Díaz de León-Martínez, L. Bernal-Jácome, M. Rodriguez-Aguilar, A. Ávila-Galarza, and R. Flores-Ramírez, Talanta, 2020, 209, 120546.

    Article  CAS  PubMed  Google Scholar 

  13. J. Diehl, S. E. Johnson, K. **a, A. West, and L. Tomanek, Chemosphere, 2012, 87, 490.

    Article  CAS  PubMed  Google Scholar 

  14. S. Maggioni, P. Balaguer, C. Chiozzotto, and E. Benfenati, Environ. Sci. Pollut. Res., 2013, 20, 1649.

    Article  CAS  Google Scholar 

  15. H. M. Kuch and K. Ballschmiter, Environ. Sci. Technol., 2001, 35, 3201.

    Article  CAS  PubMed  Google Scholar 

  16. S. A. Snyder, T. L. Keith, D. A. Verbrugge, E. M. Snyder, T. S. Gross, K. Kannan, and J. P. Giesy, Environ. Sci. Technol., 1999, 33, 2814.

    Article  CAS  Google Scholar 

  17. Z. Li, D. Li, J. R. Oh, and J. G. Je, Chemosphere, 2004, 56, 611.

    Article  CAS  PubMed  Google Scholar 

  18. K. Guenther, V. Heinke, B. Thiele, E. Kleist, H. Prast, and T. Raecker, Environ. Sci. Technol., 2002, 36, 1676.

    Article  CAS  PubMed  Google Scholar 

  19. R. Gibson, E. Becerril-Bravo, V. Silva-Castro, and B. Jiménez, J. Chromatogr. A, 2007, 1169, 31.

    Article  CAS  PubMed  Google Scholar 

  20. A. P. Cherniaev, A. S. Kondakova, and E. N. Zyk, Achiev. Life Sci., 2016, 10, 65.

    Google Scholar 

  21. S. Kazemi, M. Khalili-Fomeshi, A. Akbari, S. N. M. Kani, S. R. Ahmadian, and M. Ghasemi-Kasman, Brain Res. Bull., 2018, 139, 190.

    Article  CAS  PubMed  Google Scholar 

  22. M. Castillo and D. Barceló, Anal. Chem., 1999, 71, 3769.

    Article  CAS  PubMed  Google Scholar 

  23. M. Castillo, A. Oubiña, and D. Barceló, Environ. Sci. Technol., 1998, 32, 2180.

    Article  CAS  Google Scholar 

  24. M. Petrovic, D. Barceló, A. Diaz, and F. Ventura, J. Am. Soc. Mass Spectrom., 2003, 14, 516.

    Article  CAS  PubMed  Google Scholar 

  25. R. Loos, G. Hanke, G. Umlauf, and S. J. Eisenreich, Chemosphere, 2007, 66, 690.

    Article  CAS  PubMed  Google Scholar 

  26. I. C. Santos and K. A. Schug, J. Sep. Sci., 2017, 40, 138.

    Article  CAS  PubMed  Google Scholar 

  27. W. Vetter, Alkaloids Chem. Biol., 2012, 71, 211.

    Article  CAS  PubMed  Google Scholar 

  28. H. Bai, Q. Zhou, G. **e, and J. **ao, Talanta, 2010, 80, 1638.

    Article  CAS  PubMed  Google Scholar 

  29. D. S. Chormey and S. Bakirdere, Compr. Anal. Chem., 2018, 81, 257.

    Article  CAS  Google Scholar 

  30. S. Hu, X. Chen, R. Q. Wang, L. Yang, and X-H. Bai, TrAC, Trends Anal. Chem., 2019, 113, 340.

    Article  CAS  Google Scholar 

  31. E. Carasek, L. Morés, and J. Merib, Trends Environ. Anal. Chem., 2018, 19, e00060.

    Article  CAS  Google Scholar 

  32. I. Rykowska, J. Ziemblińska, and I. Nowak, J. Mol. Liq., 2018, 259, 319.

    Article  CAS  Google Scholar 

  33. A. R. Fontana, M. F. Silva, L. D. Martínez, R. G. Wuilloud, and J. C. Altamirano, J. Chromatogr. A, 2009, 1216, 4339.

    Article  CAS  PubMed  Google Scholar 

  34. M. Palit, D. Pardasani, A. K. Gupta, and D. K. Dubey, Anal. Chem., 2005, 77, 711.

    Article  CAS  PubMed  Google Scholar 

  35. N. Lamei, M. Ezoddin, N. R. Kakavandi, K. Abdi, and M. Ghazi-khansari, Chromatographia, 2018, 81, 923.

    Article  CAS  Google Scholar 

  36. M. Ghambarian, Y. Yamini, and A. Esrafili, Microchim.. Acta, 2012, 177, 271.

    Article  CAS  Google Scholar 

  37. H. Piri-Moghadam, F. Ahmadi, and J. Pawliszyn, TrAC, Trends Anal. Chem., 2016, 85, 133.

    Article  CAS  Google Scholar 

  38. M. Cui, J. Qiu, Z. Li, M. He, M. **, J. Kim, M. Quinto, and D. Li, Talanta, 2015, 132, 564.

    Article  CAS  PubMed  Google Scholar 

  39. P. Nurerk, C. S. M. Liew, O. Bunkoed, P. Kanatharana, and H. K. Lee, Talanta, 2019, 197, 465.

    Article  CAS  PubMed  Google Scholar 

  40. H. Zhang, B. W. L. Ng, and H. K. Lee, J. Chromatogr. A, 2014, 1326, 20.

    Article  CAS  PubMed  Google Scholar 

  41. H. Zhang and H. K. Lee, J. Chromatogr. A, 2011, 1218, 4509.

    Article  CAS  PubMed  Google Scholar 

  42. G. A. C. M. Spierings, J. Mater. Sci., 1993, 28, 6261.

    Article  CAS  Google Scholar 

  43. D. J. Monk, D. S. Soane, and R. T. Howe, Thin Solid Films, 1993, 232, 1.

    Article  CAS  Google Scholar 

  44. J. A. Von Fraunhofer, Int. J. Dent., 2012, 2012.

    Google Scholar 

  45. K. O. Van Der Werf, C. A. J. Putman, B. G. De Grooth, and J. Greve, Appl. Phys. Lett., 1994, 65, 1195.

    Article  Google Scholar 

  46. J. Yin, Z. Jiang, G. Chang, and B. Hu, Anal. Chim. Acta, 2005, 540, 333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezgin Bakirdere.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öner, M., Bodur, S., Erarpat, S. et al. A Novel Hydrogen Fluoride Assisted–Glass Surface Etching Based Liquid Phase Microextraction for the Determination of 4-n-Nonylphenol in Water by Gas Chromatography–Mass Spectrometry with Matrix Matching Strategy. ANAL. SCI. 37, 1433–1438 (2021). https://doi.org/10.2116/analsci.21P013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P013

Keywords

Navigation