Log in

A High-matched Melamine Sensor Using Core/shell Nano Particles of Fe3O4@Polyrutin–COOH and Ionic Liquid as Imprinted Polymeric Monomers

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We describe here a magnetic molecular imprinted polymeric ionic liquid (MMIPIL) film by using a functionalized ionic liquid (3-vinyl-4-amino-5-imidazole carboxamide chloride, IL) and Fe3O4@Polyrutin–COOH as a functional monomer and supporting materials. The change in the direction of the charge density in the structure of MMIPIL polymer resulted in a red shift of about 100 nm for the characteristic group of–C=O. Polyrutin containing an electron-rich benzene ring and multiple hydroxyl groups not only prevented the aggregation of Fe3O4, but also benefitted to immobilize template molecules. More symmetric amino groups in the template molecules generated more hydrogen bonds and other synergistic effects between MEL and the functional monomers, which resulted in a highly-matched and highly stable MMIPIL sensor. The proposed magnetic sensor lowered the matching potential, and enhanced the signal for the detection of melamine (MEL) in milk powder. Under the optimum conditions, the MEL template molecule showed a significant linear relationship between 5.0 × 10−3 and 0.8 μg/L with a detection limit (S/N = 3) of 1.5 × 10−3 μg/L. The MMIPIL sensor showed wonderful selectivity and exhibited facile, fast and efficient results in the monitoring MEL with recoveries of between 96.5 and 108.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Poma, A. P. F. Turner, and S. A. Piletsky, Trends Biotechnol., 2010, 28, 629.

    Article  CAS  PubMed  Google Scholar 

  2. M. Niu, C. Pham-Huy, and H. He, Microchim. Acta, 2016, 183, 2677.

    Article  CAS  Google Scholar 

  3. A. Zamora-Galvez, A. Ait-Lahcen, L. A. Mercante, E. Morales-Narvaez, A. Amine, and A. Merkoçi, Anal. Chem., 2016, 88, 3578.

    Article  CAS  PubMed  Google Scholar 

  4. Q. Han, X. Shen, W. Zhu, C. Zhu, X. Zhou, and H. Jiang, Biosens. Bioelectron., 2016, 79, 180.

    Article  CAS  PubMed  Google Scholar 

  5. T. Zhou, Y. Feng, L. Zhou, Y. Tao, D. Luo, T. **g, X. Shen, Y. Zhou, and S. Mei, Sens. Actuators, B, 2016, 236, 153.

    Article  CAS  Google Scholar 

  6. P. Yáňez-Sedeňo, S. Campuzano, and J. M. **arrón, Anal. Chim. Acta, 2017, 960, 1.

    Article  PubMed  Google Scholar 

  7. Q. Tang, X. Shi, X. Hou, J. Zhou, and Z. Xu, Analyst, 2014, 139, 6406.

    Article  CAS  PubMed  Google Scholar 

  8. F. Long, Z. Zhang, Z. Yang, J. Zeng, and Y. Jiang, J. Electroanal. Chem., 2015, 755, 7.

    Article  CAS  Google Scholar 

  9. Q. Han, X. Wang, Z. Yang, W. Zhu, X. Zhou, and H. Jiang, Talanta, 2014, 123, 101.

    Article  CAS  PubMed  Google Scholar 

  10. H. Duan, X. Wang, Y. Wang, J. Li, Y. Sun, and C. Luo, Sens. Actuators, B, 2016, 236, 44.

    Article  CAS  Google Scholar 

  11. H. Wang, Y. Zhou, Y. Guo, W. Liu, C. Dong, Y. Wu, S. Li, and S. Shuang, Sens. Actuators, B, 2012, 163, 171.

    Article  CAS  Google Scholar 

  12. H. Duan, X. Wang, Y. Wang, Y. Sun, J. Li, and C. Luo, Anal. Chim. Acta, 2016, 918, 89.

    Article  CAS  PubMed  Google Scholar 

  13. M. Amatatongchai, J. Sitanurak, W. Sroysee, S. Sodanat, S. Chairam, P. Jarujamrus, D. Nacapricha, and P. A. Lieberzeit, Anal. Chim. Acta, 2019, 1077, 255.

    Article  CAS  PubMed  Google Scholar 

  14. J. Fan, X. Xu, R. Xu, X. Zhang, and J. Zhu, Chem. Eng. J., 2015, 279, 567.

    Article  CAS  Google Scholar 

  15. Q. Wu, M. Li, Z. Huang, Y. Shao, L. Bai, and L. Zhou, J. Ind. Eng. Chem., 2018, 60, 268.

    Article  CAS  Google Scholar 

  16. S. Patra, E. Roy, R. Das, P. Karfa, S. Kumar, R. Madhuri, and P. Sharma, Biosens. Bioelectron., 2015, 73, 234.

    Article  CAS  PubMed  Google Scholar 

  17. R. Rogers and K. Seddon, Science, 2003, 302, 792.

    Article  PubMed  Google Scholar 

  18. J. Yang, L. Zhou, X. Guo, L. Li, P. Zhang, R. Hong, and T. Qiu, Chem. Eng. J., 2015, 280, 147.

    Article  CAS  Google Scholar 

  19. H. Yan, C. Yang, Y. Sun, and K. Row, J. Chromatogr. A, 2014, 1361, 53.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Pan, L. Shang, F. Zhao, and B. Zeng, Electrochim. Acta, 2015, 151, 423.

    Article  CAS  Google Scholar 

  21. J. Fan, Z. Tian, S. Tong, X. Zhang, and X. Ouyang, Food Chem., 2013, 141, 3578.

    Article  CAS  PubMed  Google Scholar 

  22. X. Lu, Y. Yang, Y. Zeng, L. Li, and X. Wu, Biosens. Bioelectron., 2018, 99, 47.

    Article  CAS  PubMed  Google Scholar 

  23. X. Zhang, N. Zhang, C. Du, P. Guan, X. Gao, C. Wang, Y. Du, S. Ding, and X. Hu, Chem. Eng. J., 2017, 317, 988.

    Article  CAS  Google Scholar 

  24. C. M. E. Gossner, J. Schlundt, P. Ben Embarek, S. Hird, D. Lo-Fo-Wong, J. J. O. Beltran, K. N. Teoh, and A. Tritscher, Environ. Health Persp., 2009, 117, 1803.

    Article  CAS  Google Scholar 

  25. J. S. Chen, Chinese Med. J-Peking, 2009, 122, 243.

    Google Scholar 

  26. X. Wu, X. Ge, S. Liang, and H. Sun, Food Anal. Methods, 2014, 7, 774.

    Article  Google Scholar 

  27. X. Peng, Z. Shi, and Y. Feng, Food Anal. Methods, 2011, 4, 381.

    Article  Google Scholar 

  28. B. Kim, L. Leblanc, R. Bushway, and L. Brian-Perkins, Food Anal. Methods, 2010, 3, 188.

    Article  Google Scholar 

  29. P. Lutter, M. Savoy-Perroud, E. Campos-Gimenez, L. Meyer, T. Goldmann, M. Bertholet, P. Mottier, A. Desmarchelier, F. Monard, C. Perrin, F. Robert, and T. Delatour, Food Control, 2011, 22, 903.

    Article  CAS  Google Scholar 

  30. H. Yu, Y. Tao, D. Chen, Y. Wang, Z. Liu, Y. Pan, L. Huang, D. Peng, M. Dai, Z. Liu, and Z. Yuan, Anal. Chim. Acta, 2010, 682, 48.

    Article  CAS  PubMed  Google Scholar 

  31. X. Deng, D. Guo, S. Zhao, L. Han, Y. Sheng, X. Yi, Y. Zhou, and T. Peng, J. Chromatogr. B, 2010, 878, 2839.

    Article  CAS  Google Scholar 

  32. J. Tan, L. Rong, and Z. Jiang, Food Anal. Methods, 2012, 5, 1062.

    Article  Google Scholar 

  33. P. Ma, F. Liang, Y. Sun, Y. **, Y. Chen, X. Wang, H. Zhang, D. Gao, and D. Song, Microchim. Acta, 2013, 180, 1173.

    Article  CAS  Google Scholar 

  34. K. Chang, S. Wang, H. Zhang, Q. Guo, X. Hu, Z. Lin, H. Sun M. Jiang, and J. Hu, PLoS ONE, 2017, 12, e0177131.

    Article  PubMed  PubMed Central  Google Scholar 

  35. E. M. Dursun, R. Üzek, N. Bereli, S. Şenel, and A. Denizli, React. Funct. Polym., 2016, 109, 33.

    Article  CAS  Google Scholar 

  36. Y. Hu and X. Lu, J. Food Sci., 2016, 81, 1272.

    Article  Google Scholar 

  37. R. Zhang, S. Xu, Y. Zhu, W. Zhao, J. Luo, X. Liu, and D. Tang, Biosens. Bioelectron., 2016, 85, 381.

    Article  CAS  PubMed  Google Scholar 

  38. L. Shang, F. Zhao, and B. Zeng, ACS Appl. Mater. Inter., 2014, 6, 18721.

    Article  CAS  Google Scholar 

  39. H. Cheng, J. Liang, Q. Zhang, and Y. Tu, J. Electroanal. Chem., 2012, 674, 7.

    Article  CAS  Google Scholar 

  40. M. Ali, S. Rafiuddin, M. Ghori, and A. Khatri, Chromatographia, 2008, 67, 517.

    Article  CAS  Google Scholar 

  41. A. Liang, L. Zhou, and Z. Jiang, Plasmonics, 2011, 6, 387.

    Article  CAS  Google Scholar 

  42. B. Wang, Y. Wang, H. Yang, J. Wang, and A. Deng, Microchim. Acta, 2011, 174, 191.

    Article  CAS  Google Scholar 

  43. J. Manzoori, M. Amjadi, and J. Hassanzadeh, Microchim Acta, 2011, 175, 47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Cheng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., **a, S., Zhou, Y. et al. A High-matched Melamine Sensor Using Core/shell Nano Particles of Fe3O4@Polyrutin–COOH and Ionic Liquid as Imprinted Polymeric Monomers. ANAL. SCI. 36, 745–749 (2020). https://doi.org/10.2116/analsci.19P371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P371

Keywords

Navigation