Log in

Application of 2-Picolylamine Derivatized Ultra-high Performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of Short-chain Fatty Acids in Feces Samples

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We present a sensitive and selective method for the simultaneous determination of short-chain fatty acids (SCFAs), such as acetic acid (AA), propionic acid, butyric acid (BA), isobutyric acid, valeric acid, isovaleric acid, hydroangelic acid, caproic acid, 4-methylvaleric acid and succinic acid (SA) in feces samples using a ultra-high performance liquidchromatography tandem mass spectrometry (UHPLC-MS/MS) with simple derivatization of 2-picolylamine. The main SFCAs were derivatized in the same condition, and showed the specific product ion (m/z 109) in the electrospray positive mode regarding to 2-picolylamine. The derivatized SA showed a different pattern of the product ion (m/z 191). The derivatized analytes showed LOD < 75 nM, LOQ < 100 nM and r2 in the calibration curve > 0.991. The QuEChERS was used for sample preparation of feces samples. In the recovery test, the recovery values appeared from 89.7 to 100.2% (RSD: 2.1 to 9.2%, n = 6). This developed method was applied to evaluate obese diabetes model mice. In the result, the branched-chain SCFAs levels in feces from model mice of spontaneous obese type II diabetes were on a declining trend compared with normal. The AA levels from model mice with high-calorie/fat diet are owed a declining trend for 3 to 9 months. The BA levels showed that normal mice were increasing, and model mice had decreased tendency for breeding months. High-calorie/fat diet showed that the SA levels increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arpaia, C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. de Roos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, and A.Y. Rudensky, Nature, 2013, 504, 451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Nishitsuji, J. **ao, R. Nagatomo, H. Umemoto, Y. Morimoto, H. Akatsu, K. Inoue, and K. Tsuneyama, Sci. Rep., 2017, 20, 15876.

    Article  Google Scholar 

  3. M. Primec, D. Micetic-Turk, and T. Langerholc, Anal. Biochem., 2017, 526, 9.

    Article  CAS  PubMed  Google Scholar 

  4. E. Lima and D. S. Abdalla, Anal. Chim. Acta, 2002, 465, 8.

    Article  Google Scholar 

  5. G. Gutnikov, J. Chromatogr. B, 1995, 677, 71.

    Article  Google Scholar 

  6. K. Tanaka, K. Ohta, P. R. Haddad, J. S. Fritz, D. A. Miyanaga, W. Hu, and K. Hasebe, J. Chromatogr. A, 2000, 884, 167.

    Article  CAS  PubMed  Google Scholar 

  7. A. Kotani, Y. Miyaguchi, M. Kohama, T. Ohtsuka, T. Shiratori, and F. Kusu, Anal. Sci., 2009, 25, 1007.

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Underwood, N. H. Salzman, S. H. Bennett, M. Barman, D. A. Mills, A. Marcobal, D. J. Tancredi, C. L. Bevins, and M. P. Sherman, J. Pediatr Gastroenterol. Nutr., 2009, 48, 216.

    Article  PubMed  PubMed Central  Google Scholar 

  9. T. Torii, K. Kanemitsu, T. Wada, S. Itoh, K. Kinugawa, and A. Hagiwara, Ann. Clin. Biochem., 2010, 47, 447.

    Article  CAS  PubMed  Google Scholar 

  10. H. Miwa and M. Yamamoto, J. Chromatogr., 1987, 427, 33.

    Article  Google Scholar 

  11. H. Miwa and M. Yamamoto, J. Chromatogr., 1990, 523, 235.

    Article  CAS  PubMed  Google Scholar 

  12. T. Yoshida, A. Uetake, H. Yamaguchi, N. Nimura, and T. Kinoshita, Anal. Biochem., 1988, 773, 70.

    Article  Google Scholar 

  13. T. Santa, O. Y. Al-Dirbashi, T. Yoshikado, T. Fukushima, and K. Imai, Biomed. Chromatogr., 2009, 23, 443.

    Article  CAS  PubMed  Google Scholar 

  14. J. Han, K. Lin, C. Sequeira, and C. H. Borchers, Anal. Chim. Acta, 2015, 854, 86.

    Article  CAS  PubMed  Google Scholar 

  15. J. C. Chan, D. Y. Kioh, G. C. Yap, B. W. Lee, and E. C. Chan, J. Pharm. Biomed. Anal., 2017, 738, 43.

    Article  Google Scholar 

  16. M. Zeng and H. Cao, J. Chromatogr. B, 2018, 7083, 137.

    Article  Google Scholar 

  17. T. Higashi, T. Ichikawa, S. Inagaki, J. Z. Min, T. Fukushima, and T. Toyo’oka, J. Pharm. Biomed. Anal., 2010, 52, 809.

    Article  CAS  PubMed  Google Scholar 

  18. A. Srivastava, S. Rai, A. Kumar Sonker, K. Karsauliya, C. P. Pandey, and S. P. Singh, Anal. Bioanal. Chem., 2017, 409, 3757.

    Article  CAS  PubMed  Google Scholar 

  19. C. Gardana, C. Del Bo, and P. Simonetti, J. Pharm. Biomed. Anal., 2017, 747, 46.

    Article  Google Scholar 

  20. S. J. Lehotay, Methods Mol. Biol., 2011, 747, 65.

    Article  CAS  PubMed  Google Scholar 

  21. M. Zeng and H. Cao, J. Chromatogr. B, 2018, 7083, 137.

    Article  Google Scholar 

  22. L. R. Hoving, M. Hei**k, V. van Harmelen, K. W. van Dijk, and M. Giera, Methods Mol. Biol., 2018, 7730, 247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Inoue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagatomo, R., Okada, Y., Ichimura, M. et al. Application of 2-Picolylamine Derivatized Ultra-high Performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of Short-chain Fatty Acids in Feces Samples. ANAL. SCI. 34, 1031–1036 (2018). https://doi.org/10.2116/analsci.18SCP10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18SCP10

Keywords

Navigation